首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
A 10-kb region of the Bacillus subtilis genome that contains genes involved in biotin-biosynthesis was cloned and sequenced. DNA sequence analysis indicated that B. subtilis contains homologs of the Escherichia coli and Bacillus sphaericus bioA, bioB, bioD, and bioF genes. These four genes and a homolog of the B. sphaericus bioW gene are arranged in a single operon in the order bioWAFDR and are followed by two additional genes, bioI and orf2. bioI and orf2 show no similarity to any other known biotin biosynthetic genes. The bioI gene encodes a protein with similarity to cytochrome P-450s and was able to complement mutations in either bioC or bioH of E. coli. Mutations in bioI caused B. subtilis to grow poorly in the absence of biotin. The bradytroph phenotype of bioI mutants was overcome by pimelic acid, suggesting that the product of bioI functions at a step prior to pimelic acid synthesis. The B. subtilis bio operon is preceded by a putative vegetative promoter sequence and contains just downstream a region of dyad symmetry with homology to the bio regulatory region of B. sphaericus. Analysis of a bioW-lacZ translational fusion indicated that expression of the biotin operon is regulated by biotin and the B. subtilis birA gene.  相似文献   

3.
目的:构建产核黄素的枯草芽孢杆菌基因工程菌.方法:以穿梭载体pEB03构建核黄素操纵子的表达质粒载体pGJB13和pGJB14,与质粒pMX45分别转化产核黄素的枯草芽孢杆菌GJ07,并通过发酵摇瓶实验检测核黄素的产量.结果:得到产核黄素的工程菌GJ13 、GJ14和GJ08,在以蔗糖为碳源的发酵条件下,GJ08可产核黄素820mg/L,提高了约55%.结论:得到了产核黄素的高产菌种G J08.  相似文献   

4.
The Bacillus subtilis birA gene, which regulates biotin biosynthesis, has been cloned and characterized. The birA gene maps at 202 degrees on the B. subtilis chromosome and encodes a 36,200-Da protein that is 27% identical to Escherichia coli BirA protein. Three independent mutations in birA that lead to deregulation of biotin synthesis alter single amino acids in the amino-terminal end of the protein. The amino-terminal region that is affected by these three birA mutations shows sequence similarity to the helix-turn-helix DNA binding motif previously identified in E. coli BirA protein. B. subtilis BirA protein also possesses biotin-protein ligase activity, as judged by its ability to complement a conditional lethal birA mutant of E. coli.  相似文献   

5.
6.
DNA damage-inducible (din) genes in Bacillus subtilis are coordinately regulated and together compose a global regulatory network that has been termed the SOS-like or SOB regulon. To elucidate the mechanisms of SOB regulation, operator/promoter regions from three din loci (dinA, dinB, and dinC) of B. subtilis were cloned. Operon fusions constructed with these cloned din promoter regions rendered reporter genes damage inducible in B. subtilis. Induction of all three din promoters was dependent upon a functional RecA protein. Analysis of these fusions has localized sequences required for damage-inducible expression of the dinA, dinB, and dinC promoters to within 120-, 462-, and 139-bp regions, respectively. Comparison of the nucleotide sequences of these three din promoters with the recA promoter, as well as with the promoters of other loci associated with DNA repair in B. subtilis, has identified the consensus sequence GAAC-N4-GTTC as a putative SOB operator site.  相似文献   

7.
Bacillus thuringiensis subspecies israliensis plasmids pTX14-1 and pTX14-3 were cloned and analyzed by Southern blot hybridization for their replication mechanism in Bacillus subtilis. The cloning of pTX14-1 into the replicon deficient vector pBOE335 showed the usual characteristics of single-stranded DNA plasmids, i.e., it generated circular single-stranded DNA and high molecular weight (HMW) multimers. The other plasmid, pTX14-3, behaved differently; it generated neither single-stranded DNA nor HMW multimers. Treatment with rifampicin did not result in the accumulation of single-stranded DNA. However, deletion of an EcoRI-PstI fragment resulted in the accumulation of both single-stranded DNA and HMW multimers. From various deletion derivatives, we have mapped the minus origin and the locus responsible for suppression of HMW multimer formation. Full activity of the minus origin and of the locus suppressing HMW formation was only observed on the native replicon, indicating a coupling to the plus strand synthesis.  相似文献   

8.
The polC gene of Bacillus subtilis is defined by five temperature-sensitive mutations and the 6-(p-hydroxyphenylazo)-uracil (HPUra) resistance mutation azp-12. Biochemical evidence suggests that polC codes for the 160-kilodalton DNA polymerase III. A recombinant plasmid, p154t, was isolated and found to contain the azp-12 marker and one end of the polC gene (N. C. Brown and M. H. Barnes, J. Cell. Biochem. 78 [Suppl.]: 116, 1983). The azp-12 marker was localized to a 1-kilobase DNA segment which was used as a probe to isolate recombinant lambda phages containing polC region sequences. A complete polC gene was constructed by in vitro ligation of DNA segments derived from two of the recombinant phages. The resulting plasmid, pRO10, directed the synthesis of four proteins of 160, 76, 39, and 32 kilodaltons in Escherichia coli maxicells. Recombination-deficient (recE) B. subtilis PSL1 containing pRO10 produced an HPUra-resistant polymerase III activity which was lost when the strain was cured of pRO10. In vivo, the HPUra resistance of the plasmid-encoded polymerase III appeared to be recessive to the resident HPUra-sensitive polymerase III enzyme.  相似文献   

9.
The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli.  相似文献   

10.
The Bacillus subtilis ureABC operon.   总被引:1,自引:0,他引:1       下载免费PDF全文
The Bacillus subtilis ureABC operon encodes homologs of the three subunits of urease enzymes of the family Enterobacteriaceae. Disruption of ureC prevented utilization of urea as a nitrogen source and resulted in a partial growth defect in minimal medium containing limiting amounts of arginine or allantoin as the sole nitrogen source.  相似文献   

11.
12.
13.
14.
A 3.8-kilobase DNA fragment from Bacillus subtilis containing the hemA gene has been cloned and sequenced. Four open reading frames were identified. The first is hemA, encoding a protein of 50.8 kilodaltons. The primary defect of a B. subtilis 5-aminolevulinic acid-requiring mutant was identified as a cysteine-to-tyrosine substitution in the HemA protein. The predicted amino acid sequence of the B. subtilis HemA protein showed 34% identity with the Escherichia coli HemA protein, which is known to code for the NAD(P)H:glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid synthesis. The B. subtilis HemA protein also complements the defect of an E. coli hemA mutant. The second open reading frame in the cloned fragment, called ORF2, codes for a protein of about 30 kilodaltons with unknown function. It is not the proposed hemB gene product porphobilinogen synthase. The third open reading frame is hemC, coding for porphobilinogen deaminase. The fourth open reading frame extends past the sequenced fragment and may be identical to hemD, coding for uroporphyrinogen III cosynthase. Analysis of deletion mutants of the hemA region suggests that (at least) hemA, ORF2, and hemC may be part of an operon.  相似文献   

15.
Bacillus subtilis pur operon expression and regulation.   总被引:9,自引:2,他引:7       下载免费PDF全文
  相似文献   

16.
17.
18.
19.
20.
A PCR-amplified DNA fragment of the relA gene from genomic Bacillus subtilis DNA was used to isolate the entire relA / spoT homologue and two adjacent open reading frames (ORFs) from a λ ZAP Express library. The relA gene, which encodes a protein of 734 amino acid residues (aa), is flanked by an ORF (170 aa) that shares high similarity to adenine phosphoribosyltransferase genes ( apt ), and downstream by an ORF (131 aa) of unknown function. This genetic organization is similar to that in Streptomyces coelicolor A3(2) and Streptococcus equismilis H46A. relA shows significant similarity to the Escherichia coli relA and spoT genes, which are responsible for the synthesis and degradation of the highly phosphorylated guanosine nucleotides (p)ppGpp, triggering the stringent response. Deletion of the relA gene generated a (p)ppGpp0 phenotype that demonstrated its essential role in the response to amino acid deprivation and resulted in impaired/lowered induction of proteins involved in stress response as well as amino acid biosynthesis, as judged by two-dimensional gel electrophoresis. The same effects of impaired induction of some σB-independent proteins could also be shown in a sigB/relA double mutant, supporting the role of relA in derepression/induction of catabolic and anabolic genes during stringent response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号