首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Proteases play a critical role in many cellular functions and have been an attractive therapeutic target due to their involvement in a number of disease processes. One prominent example is the secretases responsible for the generation of amyloid beta peptide, which is believed to be central for the development of Alzheimer's disease. It is therefore desirable to identify and characterize these proteases. We have developed a novel functional approach for identification of proteases and modulators by coupling the protease activity to caspase-mediated apoptosis. Here we show the proof of principle for this approach using beta-secretase as an example. We provide data showing that 1. A modified caspase-3 containing beta-secretase cleavage site induces apoptosis in 293T cells. 2. The modified caspase-3 induced apoptosis is correlated with the susceptibility of beta-secretase recognition sequence to beta-secretase. 3. In vivo beta-secretase competitors BACE2 and BACE2(D110A) prevent the modified caspase-3 induced cell death. Therefore, this approach can be a useful tool in studies of proteolytic cleavage provided only that the protease recognition sequence is known.  相似文献   

3.
Alzheimer's beta-secretase (BACE1) is a membrane-bound protease that cleaves the amyloid precursor protein (APP) in the trans-Golgi network, an initial step in the pathogenesis of Alzheimer's disease. Although BACE1 is distributed among various tissues including brain, its physiological substrate other than APP have not been identified. We have recently found that when BACE1 was overexpressed in COS cells together with alpha2,6-sialyltransferase (ST6Gal I), the secretion of ST6Gal I markedly increased, suggesting that BACE1 cleaves ST6Gal I as a physiological substrate. Thus BACE1 is the first identified protease that is responsible for the cleavage and secretion of glycosyltransferases.  相似文献   

4.
A key factor in Alzheimer's disease (AD) is the beta-secretase activity that is required for the production of beta-amyloid (Abeta) peptide from its amyloid precursor protein (APP) precursor. In this study, the majority of Abeta secretion from neuronal chromaffin cells was found to occur via the regulated secretory pathway, compared with the constitutive secretory pathway; therefore, beta-secretase activity in the regulated secretory pathway was examined for the production and secretion of Abeta in chromaffin cells obtained from in vivo adrenal medullary tissue. The presence of Abeta(1-40) in APP-containing chromaffin vesicles, which represent regulated secretory vesicles, was demonstrated by radioimmunoassay (RIA) and reverse-phase high-performance liquid chromatography. These vesicles also contain Abeta(1-42), measured by RIA. Significantly, regulated secretion of Abeta(1-40) from chromaffin cells represented the majority of secreted Abeta (> 95% of total secreted Abeta), compared with low levels of constitutively secreted Abeta(1-40). These results indicate the importance of Abeta production and secretion in the regulated secretory pathway as a major source of extracellular Abeta. Beta-secretase activity in isolated chromaffin vesicles was detected with the substrate Z-Val-Lys-Met-/MCA (methylcoumarinamide) that contains the beta-secretase cleavage site. Optimum beta-secretase activity in these vesicles required reducing conditions and acidic pH (pH 5-6), consistent with the in vivo intravesicular environment. Evidence for cysteine protease activity was shown by E64c inhibition of Z-Val-Lys-Met-MCA-cleaving activity, and E64c inhibition of Abeta(1-40) production in isolated chromaffin vesicles. Chromatography resolved the beta-secretase activity into two distinct proteolytic pathways consisting of: (i) direct cleavage of the beta-secretase site at Met-/Asp by two cysteine proteolytic activities represented by peaks Il-A and Il-B, and (ii) an aminopeptidase-dependent pathway represented by peak I cysteine protease activity that cleaves between Lys-/Met, followed by Met-aminopeptidase that would generate the beta-secretase cleavage site. Treatment of chromaffin cells in primary culture with the cysteine protease inhibitor E64d reduced the production of the beta-secretase product, a 12-14 kDa C-terminal APP fragment. In addition, BACE 1 and BACE 2 were detected in chromaffin vesicles; BACE 1 represented a small fraction of total beta-secretase activity in these vesicles. These results illustrate that multiple cysteine proteases, in combination with BACE 1, contribute to beta-secretase activity in the regulated secretory pathway. These results complement earlier findings for BACE 1 as beta3-secretase for Abeta production in the constitutive secretory pathway that provides basal secretion of Abeta into conditioned media. These findings suggest that drug inhibition of several proteases may be required for reducing Abeta levels as a potential therapeutic approach for AD.  相似文献   

5.
beta-Secretase, also known as BACE, is a transmembrane aspartyl protease, which generates the N terminus of Alzheimer's disease amyloid beta-peptide. The activity of beta-secretase is the rate-limiting step of brain plaques production in vivo, and hence is a potential target for disease modifying drugs for Alzheimer's disease. To better understand the mechanism of action of beta-secretase and help explore novel strategies for drug discovery for Alzheimer's disease, it is important to elucidate the three-dimensional structure of its zymogen. Based on the X-ray structure of the enzyme's protease domain and the X-ray structure of pepsinogen, a model of the three-dimensional structure of the beta-secretase zymogen has been constructed. Comparison of the computed structure of pro-BACE with X-ray structures of pepsinogen and progastricsin (two other pro-aspartyl proteases) reveals a significant difference in the relationship of the pro-segment to the catalytic aspartates. In both pepsinogen and progastricsin a lysine side-chain in the pro-segment forms a salt bridge to the two catalytic aspartates, occupying the position normally occupied by a catalytic water. In the pro-BACE model there is no salt bridge, and the corresponding residue-a proline-does not interact at all with the catalytic residues. These findings can be used to elucidate the recent observations that the pro-domain of beta-secretase does not suppress activity as in a strict zymogen but does appear to facilitate proper folding of an active protease domain. The predicted three-dimensional structure of beta-secretase zymogen and the relevant findings might also provide useful insights for rational design of effective drugs against Alzheimer's disease.  相似文献   

6.
Cathepsin-E is an endolysosomal aspartic proteinase and is predominantly expressed in immune system cells. Deficiency of cathepsin-E is associated with the development of atopic dermatitis, a pruritic inflammatory skin disease, which has put us to face a high selectivity challenge in the development of drugs for the therapy of Alzheimer's disease or breast cancer. This is because BACE1 (also known as beta-secretase) and cathepsin-D, both belonging to the family of aspartic proteinases, might interact with the same compound as cathepsin-E does. BACE1 is a putative prime therapeutic target for the treatment of Alzheimer's disease, and cathepsin-D a potential target for breast cancer. Accordingly, in the course of finding drugs against Alzheimer's disease or breast cancer by inhibiting BACE1 or cathepsin-D, the desired drugs should selectively inhibit only BACE1 or cathepsin-D, but definitely not cathepsin-E. To realize this, it is indispensable to find out the structural difference of the three enzymes. Since the crystal structures of BACE1 and cathepsin-D are already known, the lack of three-dimensional structure of cathepsin-E has become the bottleneck in this regard. In view of this, the three-dimensional structure of cathepsin-E has been developed. Although the overall structures of the three enzymes are quite similar to each other, some subtle difference around their active sites that distinguishes cathepsin-E from cathepsin-D and BACE1 has been revealed through an analysis of hydrogen bond network and microenvironment. The computed three-dimensional structure of cathepsin-E and the relevant findings might provide useful insights for designing inhibitors with the desired selectivity.  相似文献   

7.
Human BACE, also known as beta-secretase, shows promise as a potential therapeutic target for Alzheimer's disease. We determined the apo structure of BACE to 1.75 A, and a structure of a hydroxyethylamine inhibitor complex derived by soaking. These show significant active-site movements compared to previously described BACE structures. Additionally, the structures reveal two pockets that could be targeted by structure-based drug design.  相似文献   

8.
beta-Secretase, a beta-site amyloid precursor protein (APP) cleaving enzyme (BACE), participates in the secretion of beta-amyloid peptides (Abeta), the major components of the toxic amyloid plaques found in the brains of patients with Alzheimer's disease (AD). According to the amyloid hypothesis, accumulation of Abeta is the primary influence driving AD pathogenesis. Lowering of Abeta secretion can be achieved by decreasing BACE activity rather than by down-regulation of the APP substrate protein. Therefore, beta-secretase is a primary target for anti-amyloid therapeutic drug design. Several approaches have been undertaken to find an effective inhibitor of human beta-secretase activity, mostly in the field of peptidomimetic, non-cleavable substrate analogues. This review describes strategies targeting BACE mRNA recognition and its down-regulation based on the antisense action of small inhibitory nucleic acids (siNAs). These include antisense oligonucleotides, catalytic nucleic acids - ribozymes and deoxyribozymes - as well as small interfering RNAs (siRNAs). While antisense oligonucleotides were first used to identify an aspartyl protease with beta-secretase activity, all the strategies now demonstrate that siNAs are able to inhibit BACE gene expression in a sequence-specific manner, measured both at the level of its mRNA and at the level of protein. Moreover, knock-down of BACE reduces the intra- and extracellular population of Abeta40 and Abeta42 peptides. An anti-amyloid effect of siNAs is observed in a wide spectrum of cell lines as well as in primary cortical neurons. Thus targeting BACE with small inhibitory nucleic acids may be beneficial for the treatment of Alzheimer's disease and for future drug design.  相似文献   

9.
We applied cDNA selection methods to a genomic clone (YAC 761B5) from chromosome 21 located in the so-called 'Down critical region' in 21q22.3. Starting from human fetal heart and brain mRNAs we obtained and sequenced several cDNA clones. One of these clones (Down region aspartic protease (DRAP), named also BACE2 according to the gene nomenclature) revealed a striking nucleotide and amino acid sequence identity with several motifs present in members of the aspartic protease family. In particular the amino acid sequences comprising the two catalytic sites found in all mammalian aspartic proteases are perfectly conserved. Interestingly, the predicted protein shows a typical membrane spanning region; this is at variance with most other known aspartic proteases, which are soluble molecules. We present preliminary evidence, on the basis of in vitro translation studies and cell transfection, that this gene encodes a glycosylated protein which localizes mainly intracellularly but to some extent also to the plasma membrane. Furthermore DRAP/BACE2 shares a high homology with a newly described beta-secretase enzyme (BACE-1) which is a transmembrane aspartic protease. The implications of this finding for Down syndrome are discussed.  相似文献   

10.
11.
Alzheimer's beta-secretase (BACE1) is a membrane-bound protease that cleaves the amyloid precursor protein (APP) in the trans-Golgi network, an initial step in the pathogenesis of Alzheimer's disease. Although BACE1 is distributed among various tissues including brain, its physiological substrate other than APP have not been identified. We have recently found that when BACE1 was overexpressed in COS cells together with α2,6-sialyltransferase (ST6Gal I), the secretion of ST6Gal I markedly increased, suggesting that BACE1 cleaves ST6Gal I as a physiological substrate. Thus BACE1 is the first identified protease that is responsible for the cleavage and secretion of glycosyltransferases. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity   总被引:2,自引:0,他引:2  
Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Abeta protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and beta-secretase activity are due to posttranslational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Abeta. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a GGA3-dependent mechanism regulating BACE levels and beta-secretase activity. This mechanism may explain increased cerebral levels of BACE and Abeta following cerebral ischemia and existing in AD.  相似文献   

13.
Yeon SW  Jeon YJ  Hwang EM  Kim TY 《Peptides》2007,28(4):838-844
One of the hallmarks of Alzheimer's disease (AD) is the deposition of beta-amyloid (Abeta) peptides in neuritic plaques. Abeta peptides are derived from sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. beta-APP cleaving enzyme-1 (BACE1) has been shown to be the major beta-secretase and is a primary therapeutic target for AD. We report here novel BACE1 inhibitory peptidomimetics, which are derived from catalytic domains of BACE1 themselves, instead of APP cleavage sites and are structurally modified by myristoylation in N-terminus for efficient cell permeability. The peptides not only inhibited the formation of APPbeta (a soluble N-terminal fragment of APP cleaved by beta-secretase), but also significantly reduced Abeta40 production. Our results suggest a new approach for identifying inhibitory agents for the treatment of AD.  相似文献   

14.
Accumulation of the amyloid-beta (A beta) peptide in the central nervous system (CNS) is considered by many to be the crucial pathological insult that ultimately leads to the development of Alzheimer's disease (AD). Regulating the production and/or aggregation of A beta could therefore be of considerable benefit to patients afflicted with AD. It has long been known that A beta is derived from the proteolytic processing of the amyloid precursor protein (APP) by two enzymatic activities, beta-secretase and gamma-secretase. Recent breakthroughs have led to the identification of the aspartyl protease BACE (beta-site APP-cleaving enzyme) as beta-secretase and the probable identification of the presenilin proteins as gamma-secretases. This review discusses what is know about BACE and the presenilins, focusing on their capacity as secretases, as well as the options for therapeutic advancement the careful characterization of these proteins will provide. These findings are presented in the context of the "amyloid cascade hypothesis" and its physiological relevance in AD pathogenesis.  相似文献   

15.
The enzyme BACE (beta-site APP-cleaving enzyme) has recently been identified as the beta-secretase that cleaves the amyloid precursor protein (APP) to produce the N terminus of the Abeta peptide found in plaques in the brains of Alzheimer's disease patients. BACE is an aspartic protease similar to pepsin and renin. Comparative modeling of the three-dimensional structure of BACE in complex with its substrate shows that several residues confer specificity of the enzyme for APP. In particular, Arg296 forms a salt-bridge with the P1' Asp of the APP substrate, explaining the unusual preference of BACE among aspartic proteases for a P1' residue that is negatively charged. Several hydrophobic residues in the enzyme form a pocket for the P1 hydrophobic residue (Met in wild-type APP and Leu in APP with the "Swedish mutation" associated with early-onset of Alzheimer's disease). Inhibitors that can bind to the BACE active site may prove useful for drugs to treat and prevent Alzheimer's disease.  相似文献   

16.
17.
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.  相似文献   

18.
This highlight article describes three Alzheimer's disease (AD) studies presented at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms for producing neurotoxic beta-amyloid (Abeta) peptides. One group described the poor kinetics of BACE 1 for cleaving the wild-type (WT) beta-secretase site of APP found in most AD patients. They showed that cathepsin D displays BACE 1-like specificity and cathepsin D is 280-fold more abundant in human brain than BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the WT beta-secretase site, they suggested continuing the search for additional beta-secretase(s). The second group reported cathepsin B as an alternative beta-secretase possessing excellent kinetic efficiency and specificity for the WT beta-secretase site. Significantly, inhibitors of cathepsin B improved memory, with reduced amyloid plaques and decreased Abeta(40/42) in brains of AD animal models expressing amyloid precursor protein containing the WT beta-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Abeta. Results showed that cathepsin B, but not BACE 1, efficiently cleaves the WT beta-secretase isoaspartate site. Furthermore, cyclization of N-terminal Glu by glutaminyl cyclase generates highly amyloidogenic pGluAbeta(3-40/42). These presentations suggest cathepsin B and glutaminyl cyclase as potential new AD therapeutic targets.  相似文献   

19.
The involvement of beta-secretase (BACE1; beta-site APP-cleaving enzyme) in producing the beta-amyloid component of plaques found in the brains of Alzheimer's patients, has fueled a major research effort to characterize this protease. Here, we describe work toward understanding the substrate specificity of BACE1 that began by considering the natural APP substrate and its Swedish mutant, APPSw, and proceeded on to include oxidized insulin B chain and ubiquitin substrates. From these findings, and the study of additional synthetic peptides, we determined that a decapeptide derived from APP in which the P3-P2' sequence, ...VKM--DA..., was replaced by ...ISY--EV... (-- = beta site of cleavage), yielded a substrate that was cleaved by BACE1 seven times faster than the corresponding APPSw peptide, SEVNL--DAEFR. The expanded peptide, GLTNIKTEEISEISY--EVEFRWKK, was cleaved an additional seven times faster than its decapeptide counterpart (boldface), and provides a substrate allowing assay of BACE1 at picomolar concentrations. Several APP mutants reflecting these beta-site amino acid changes were prepared as the basis for cellular assays. The APPISYEV mutant proved to be a cellular substrate that was superior to APPSw. The assay based on APPISYEV is highly specific for measuring BACE1 activity in cells; its homolog, BACE2, barely cleaved APPISYEV at the beta-site. Insertion of the optimized ISY--EV motif at either the beta-site (Asp1) or beta'-site (Glu11) directs the rate of cellular processing of APP at these two accessible sites. Thus, we have identified optimal BACE1 substrates that will be useful to elucidate the cellular enzymatic actions of BACE1, and for design of inhibitors that might be of therapeutic benefit in Alzheimer's disease.  相似文献   

20.
The novel transmembrane aspartic protease BACE (for Beta-site APP Cleaving Enzyme) is the beta-secretase that cleaves amyloid precursor protein to initiate beta-amyloid formation. As such, BACE is a prime therapeutic target for the treatment of Alzheimer's disease. BACE, like other aspartic proteases, has a propeptide domain that is removed to form the mature enzyme. BACE propeptide cleavage occurs at the sequence RLPR downward arrowE, a potential furin recognition motif. Here, we explore the role of furin in BACE propeptide domain processing. BACE propeptide cleavage in cells does not appear to be autocatalytic, since an inactive D93A mutant of BACE is still cleaved appropriately. BACE and furin co-localize within the Golgi apparatus, and propeptide cleavage is inhibited by brefeldin A and monensin, drugs that disrupt trafficking through the Golgi. Treatment of cells with the calcium ionophore, leading to inhibition of calcium-dependent proteases including furin, or transfection with the alpha(1)-antitrypsin variant alpha(1)-PDX, a potent furin inhibitor, dramatically reduces cleavage of the BACE propeptide. Moreover, the BACE propeptide is not processed in the furin-deficient LoVo cell line; however, processing is restored upon furin transfection. Finally, in vitro digestion of recombinant soluble BACE with recombinant furin results in complete cleavage only at the established E46 site. Taken together, our results strongly suggest that furin, or a furin-like proprotein convertase, is responsible for cleaving the BACE propeptide domain to form the mature enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号