首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
The influence of inoculum size on aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON) production was examined on irradiated corn kernels. Spore concentrations were determined in serial dilutions and adjusted to 10,102,103,105 and 106 spores/ml. Aflatoxin B1 production was dependent on the inoculum size. The high levels of aflatoxin B1 produced byA. parasiticus (21 and 30 mg/kg) were obtained with 102 and 103 spores/ml after 35 and 20 days incubation. There was no spore concentration influence on zearalenone and deoxynivalenol production after 10, 20 and 35 days incubation. At 28°C and 0.97 water activity (aw), the mean levels of zearalenone production were 382, 267 and 520 μg/kg and the mean levels on deoxynivalenol production were 697,465 and 782 μg/kg.  相似文献   

2.
This study determined the biotic interaction between 30 non-toxigenic indigenous strains of Aspergillus niger aggregate, Aspergillus flavus, Trichoderma spp., Mucor spp., Cladosporium spp., Ulocladium spp., Curvularia spp., Absidia spp., Geotrichum spp. and Acremonium spp., isolated from soil destined for maize crops, with respect to their ability to prevent ochratoxin A (OTA) production by A. carbonarius on “in vitro” assay, on liquid and solid medium. OTA production was completely inhibited when A. carbonarius was inoculated in a interactive mixed culture with all A. niger aggregate strains assayed, a 80 % of Trichoderma spp. strains, a 40 % of Cladosporium spp. strains, Acremonium spp and Geotrichum spp; only one strain of A. flavus tested was able to completely inhibit the mycotoxin accumulation. OTA production increased when A. carbonarius ACS 8 was growing on liquid interactive mixed culture with Mucor spp strains. These results demonstrated that OTA production by Aspergillua carbonarius strain was significantly influenced by the presence of different non-toxigenic fungal strains when growing together on paired cultures.  相似文献   

3.
An extensive survey of filamentous fungi isolated from wheat grown and consumed in Lebanon and their capacity to produce aflatoxin B1 (AFB1) and ochratoxin A (OTA) was conducted to assess fungi potential for producing these toxins in wheat. From the 468 samples of wheat kernel, collected at preharvest stage from different locations during 2008 and 2009 cultivation seasons, 3,260 fungi strains were isolated with 49.4% belonging to Penicillium spp. and 31.2% belonging to Aspergillus spp. Penicillium spp. was detected on wheat samples with a high amount of P. verrucosum (37.0%). Among the different Aspergillus spp. isolated, A. niger aggregate was predominant and constituted 37.3%. whereas the isolation rate of A. flavus and A. ochraceus was 32.2 and 25.6%, respectively. The ability to produce OTA and AFB1 by isolates belonging to Aspergillus spp. and Penicillium spp. was analyzed by high performance liquid chromatography with fluorescence detector (HPLC-FLD). It was found that 57.0% of Penicillium spp. and 80% of A. ochraceus isolates tested produced OTA, respectively, at maximum concentrations of 53 and 65 μg/g CYA. As for the aflatoxinogenic ability, 45.3% of A. flavus produced AFB1, with maximum concentration of 40 μg/g CYA. A total of 156 wheat samples were analyzed for the levels of OTA and AFB1 by HPLC-FLD. The results showed that 23.7% were contaminated with OTA, at a concentration higher than 3 μg/kg and 35.2% of these samples were contaminated with AFB1 at concentration higher than 2 μg/kg. The risks originating from toxin levels in wheat produced in Lebanon should be monitored to prevent their harmful effects on public health.  相似文献   

4.
Samples of stored maize from villages located in five different agroecological zones (southern lowlands, northern lowlands, Senqu river valley, foothills and mountains) of Lesotho were collected in 2009/10 and 2010/11 and assessed for contamination with toxigenic fungi. The water activity of all samples collected during the two seasons was <0.70. The total fungal populations of the maize from different regions in the two seasons was not significantly different (p?>?0.05). Fusarium verticillioides, F. proliferatum and F. subglutinans predominated in different regions in both seasons based on molecular analyses. In the 2009/10 season, the isolates of these species all produced FB1, while in the 2010/11 season, very few produced FB1. A. flavus isolates (2009/10) were recovered from mountains and Senqu river valley samples while the 2010/11 isolates were predominantly from the foothills and northern lowlands. The mountain isolates of Aspergillus section Flavi produced the highest levels of AFB1 (20 mg kg?1). Aspergillus parasiticus was only isolated from the foothills, Senqu river valley and southern lowlands samples, and the AFB1 levels produced ranged from ‘none detected’ to 3.5 mg kg?1. The Aspergillus ochraceous isolates were least frequently encountered in both seasons. In the 2009/10 season, the isolates from the northern lowlands produced ochratoxin A (OTA) in culture. No isolates of A. niger from different regions in both seasons produced any OTA. Multi-mycotoxin analyses of the maize samples were done for a range of mycotoxins. At least one sample from each region in both seasons was FB1-positive. FB1 levels for 2010/11 samples (7–936 μg kg?1) were higher than in the 2009/10 season (2–3 μg kg?1). In both seasons, the mountains registered the highest levels of FB1. Deoxynivalenol (DON) was recovered from all the samples analysed, with the highest mean contamination of 1,469 μg kg?1 in samples from the northern lowlands. Moniliformin (MON) was detected from all agroecological zones in the two seasons (5–320 μg kg?1 in 2009/10; 15–1,205 μg kg?1 in 2010/11). Emerging toxins such as fusaproliferin (FUS) and beauvericin (BEA) were also detected. OTA was not detected in any of the samples analysed. Only one 2009/10 sample in the Senqu river valley was positive for AFB1. This is the first report on toxigenic fungi and multi-mycotoxin contamination of maize samples from subsistence farmers’ stores in different agroecological zones of Lesotho.  相似文献   

5.
Aims: To study the interaction between Bacillus spp. and contaminating Aspergillus flavus isolated strains from Thai fermented soybean in order to limit aflatoxin production. To study the detoxification of aflatoxin B1 (AFB1) and ochratoxin A (OTA) by Bacillus spp. in order to find an efficient strain to remove these toxins. Methods and Results: One A. flavus aflatoxin-producing strain and 23 isolates of Bacillus spp. were isolated from soybean and fresh Thua-nao collected from the north of Thailand. Inhibition studies of A. flavus and A. westerdijkiae NRRL 3174 (reference strain) growth by all isolates of Bacillus spp. were conducted by dual culture technique on agar plates. These isolates were also tested for AFB1 and OTA detoxification ability on both solid and liquid media. Most of the strains were able to detoxify aflatoxin but only some of them could detoxify OTA. Conclusions: One Bacillus strain was able to inhibit growth of both Aspergillus strains and to remove both mycotoxins (decrease of 74% of AFB1 and 92·5% of OTA). It was identified by ITS sequencing as Bacillus licheniformis. The OTA decrease was due to degradation in OTα. Another Bacillus strain inhibiting both Aspergillus growth and detoxifying 85% of AFB1 was identified as B. subtilis. AFB1 decrease has not been correlated to appearance of a degradation product. Significance and Impact of the Study: The possibility to reduce AFB1 level by a strain from the natural flora is of great interest for the control of the quality of fermented soybean. Moreover, the same strain could be a source of efficient enzyme for OTA degradation in other food or feeds.  相似文献   

6.
《Fungal biology》2020,124(1):1-7
Aspergillus flavus is the main xerophylic species colonising stored peanuts resulting in contamination with aflatoxins (AFs) and cyclopiazonic acid (CPA). This study evaluated the relationship between storage of shelled peanuts under interacting abiotic conditions on (a) temporal respiration (R) and cumulative CO2 production, (b) dry matter losses (DMLs) and (c) aflatoxin B1 (AFB1) and CPA accumulation. Both naturally contaminated peanuts and those inoculated with A. flavus were stored for 7-days under different water activities (aw; 0.77–0.95) and temperatures (20–35°C). There was an increase in the temporal CO2 production rates in wetter and warmer conditions, with the highest respiration at 0.95 aw + A. flavus inoculum at 30°C (2474 mg CO2kg−1h−1). The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Maximum mycotoxin contamination was always at 0.95 aw although optimal temperatures were 25-30°C for AFs and 30-35°C for CPA. These results showed a correlation between CO2 production and mycotoxin accumulation. They also provide valuable information for the creation of a database focused on the development of a post-harvest decision support system to determine the relative risks of contamination with these mycotoxins in stored shelled peanuts.  相似文献   

7.
Agarwood (Oudh), is often used by people in the Kingdom of Saudi Arabia. The Oudh has been mentioned in the Hadith and is traditionally used for its aroma (perfuming smell) and potential medicinal applications. The aim of the study was to isolate mycotoxigenic fungi that grow on agarwood and the factors and storage conditions that enhance their growth potential. In addition to the detection of associated mycotoxins like: Aflatoxin B1 (AFB1) and ochratoxin A (OTA) from agarwood. Agarwood samples were collected from local markets of Jeddah governorate, Kingdom of Saudi Arabia. Standard dilution plate method was used for the isolation of fungi. Isolated fungi were identified based on morphological characteristics and confirmed using molecular biology techniques. AFB1 and OTA were detected by High Performance Liquid Chromatography (HLPC). The results indicated that the most commonly isolated fungal genera were in the following descending order: Aspergillus, Penicillium, Fusarium and Rhizopus. Among Aspergillus genera, A. flavus and A. ochraceus were detected based on their morphology and confirmed by PCR using specific primers. It was also noted that AFB1 was released by 15.3 and 55.0% of A. flavus and A. parasiticus isolates respectively with levels reaching up to 14.60 µg/L. The moisture content in the samples ranged from 3% to 10% affected fungal growth. AFB1 was detected in 22 out of 50 of the samples. The maximum level of AFB1 (50.7 µg/kg) was detected in samples with higher moisture content (12%) stored at a temperature of 32 °C. Aspergillus fungi were found to be the most predominant fungal genera found on agarwood. Moisture content (9–10%) and storage temperature (32 °C) stimulated fungal growth and their ability to produce mycotoxins. For this reason, storage conditions at the marketing place should be adequate in order not to provide a conducive environment for fungal growth which is associated with the mycotoxin production. In order to prevent fungal growth and mycotoxin production, it would be recommended to store agarwood at temperatures not exceeding 25 °C and moisture content of up to a maximum of 5–6%.  相似文献   

8.
A novel agro-residue, tea stalks, was tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger JMU-TS528. Maximum yield of tannase was obtained when SSF was carried out at 28 °C, pH 6.0, liquid-to-solid ratio (v/w) 1.8, inoculum size 2 ml (1?×?108 spores/ml), 5 % (w/v) ammonium chloride as nitrogen source and 5 % (w/v) lactose as additional carbon source. Under optimum conditions, tannase production reached 62 U/g dry substrate after 96 h of fermentation. Results from the study are promising for the economic utilization and value addition of tea stalks.  相似文献   

9.
The effects of temperature, water activity (aw), incubation time, and their combinations on radial growth and ochratoxin A (OTA) production of/by eight Aspergillus niger aggregate strains (six A. tubingensis and two A. niger) and four A. carbonarius isolated from Moroccan grapes were studied. Optimal conditions for the growth of most studied strains were shown to be at 25°C and 0.95 aw. No growth was observed at 10°C regardless of the water activity and isolates. The optimal temperature for OTA production was in the range of 25°C∼30°C for A. carbonarius and 30°C∼37°C for A. niger aggregate. The optimal aw for toxin production was 0.95∼0.99 for A. carbonarius and 0.90∼0.95 for A. niger aggregate. Mean OTA concentration produced by all the isolates of A. niger aggregate tested at all sampling times shows that maximum amount of OTA (0.24 μg/g) was produced at 37°C and 0.90 aw. However, for A. carbonarius, mean maximum amounts of OTA (0.22 μg/g) were observed at 25°C and 0.99 aw. Analysis of variance showed that the effects of all single factors (aw, isolate, temperature and incubation time) and their interactions on growth and OTA production were highly significant.  相似文献   

10.
The aim of this study was to investigate the contamination of pig feed with moulds and the occurrence of mycotoxins. A total of 30 feed samples were collected at different animal feed factories in the north-western part of Croatia. Mycological analysis showed that the total number of moulds ranged from 1?×?103 to 1?×?105?cfu/g with samples contaminated with Aspergillus spp. (63?%), Penicillium spp. (80?%), and Fusarium spp. (77?%). A determination of aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), T-2 toxin (T-2) and fumonisin (FUM) concentration was done using the validated ELISA method. The mean concentrations of AFB1 (0.5?±?0.6???g/kg), OTA (1.53?±?0.42???g/kg) and FUM (405?±?298???g/kg) were below the maximum levels or recommended values in the EU in all the investigated samples. The observed results indicated an increased contamination of pig feed with Fusarium mycotoxins DON and ZEA with mean concentrations of 817?±?447 and 184?±?214???g/kg, higher than recommended in 40 and 17?% of the analysed samples, respectively.  相似文献   

11.
Studies on the aflatoxins, toxic metabolites of Aspergillus flavus and A. parasiticus, have involved test systems ranging from cell cultures to laboratory animals. This work reports on the differential response by sex of Oncopeltus fasciatus to aflatoxin B1 (AFB1). Young adult milkweed bugs were chosen randomly from our stock colony and housed in glass culture jars. Triplicate sets of experimental animals were fed 5 μg/ml of AFB1 in their liquid diet. The first death for the experimental females occurred at day 4, and at 10 days for the experimental males. A 50% lethality level for experimental females developed by day 8. Males subjected to the same concentration achieved a 50% lethality level at day 24. For the females the LD50 occurred after consuming 0.49 μg/ml of AFB1. The results indicate that adult female milkweed bugs were hypersensitive to AFB1 as compared to adult males. This organism is more sensitive than the American cockroach and less sensitive than the fruitfly, housefly, and honeybee to toxic aflatoxicosis. Even the female is not sufficiently sensitive to rate highly as a bioassay organism for AFB1. The extreme difference in mortality between the sexes is significant, unusual, and unexplained.  相似文献   

12.
Summary The effect of inoculum size and potassium hexacyanoferrate II-trihydrate, K4[Fe(CN)6]·3 H2O (KHCF), on pectinase synthesis by Aspergillus niger in submerged conditions were studied. Experiments were performed in shake flasks and in a 10-1 stirred bioreactor. Spore concentrations in the range 102–108 spores/1 of substrate were tested. Enzyme activity measured by the Apple Juice Depectinizing Assay (AJDA) showed the highest values using the smallest inoculum. Higher spore concentrations led to a 25% or even up to a 50% reduction of activity. Polygalacturonase (PG) activity decreased similarly to AJDA activity with higher inoculum concentration. Pectinlyase (PL) showed the opposite relationship, while pectin esterase (PE) did not show any correlation with inoculum concentration. Experiments in the fermentor using a reduced inoculum of 102 spores/1 showed that the whole process was prolonged in comparison to 108 spores/1 inoculum. A pronounced effect of KHCF on fungal morphology as well as on enzymatic activity was observed. With increased concentration the morphology gradually changed from loose pellets to smaller compact ones. The enzymatic activity was markedly improved. In the bioreactor the amount of biomass was reduced from about g/l to 8 g/l. The activities were improved in comparison to fermentations without KHCF as follows: AJDA from 68 to 112 units (U)/ml, viscosity reduction from 83% to 90%, PG from 0.8 to 3.3 U/ml, PE from 32 to 49 U/ml and PL from 0.05 to 0.12 U/ml. The fermentation time was reduced from 96 to 68 h. Offprint requests to: J. Friedrich  相似文献   

13.
Invasion of crops with Aspergillus flavus may result in contamination of food and feed with carcinogenic mycotoxins such as aflatoxins (AF) and cyclopiazonic acid (CPA). In the present study, distribution and toxigenicity of Aspergillus flavus and A. parasiticus in soils of five peanut fields located in Guilan province, Northern Iran was investigated. From a total of 30 soil samples, 53 strains were isolated which all of them were finally identified as A. flavus by a combination of colony morphology, microscopic criteria and mycotoxin profiles. Chromatographic analysis of fungal cultures on yeast extract sucrose broth by tip culture method showed that 45 of the 53 A. flavus isolates (84.9 %) were able to produce either CPA or AFB1, while eight of the isolates (15.1 %) were non-toxigenic. The amounts of CPA and AFB1 produced by the isolates were reported in the range of 18.2–403.8 μg/g and 53.3–7446.3 μg/g fungal dry weights, respectively. Chemotype classification of A. flavus isolates based on the ability for producing mycotoxins and sclerotia showed that 43.4 % were producers of CPA, AFB1 and sclerotia (group I), 13.2 % of CPA and AFB1 (group II), 9.4 % of AFB1 and sclerotia (group III), 13.2 % of AFB1 (group IV), 5.7 % of CPA and sclerotia (group V) and 15.1 % were non-toxigenic with no sclerotia (group VI). No strain was found as producer of only CPA or sclerotia. These results indicate different populations of mycotoxigenic A. flavus strains enable to produce hazardous amounts of AFB1 and CPA are present in peanuts field soils which can be quite important regard to their potential to contaminate peanuts as a main crop consumed in human and animal nutrition.  相似文献   

14.
《Fungal biology》2022,126(1):82-90
Maize grown in both North and South America are now predominantly genetically modified (GM) cultivars with some resistance to herbicide, pesticide, or both. There is little information on the relative colonisation and aflatoxin B1 (AFB1) production with maize meal-based nutritional matrices based on kernels of non-GM maize and isogenic GM-ones by strains of Aspergillus flavus. The objectives were to examine the effect of interacting conditions of temperature (25–35 °C) and water availability (0.99–0.90 water activity, aw) on (a) mycelial growth, (b) AFB1 production and (c) develop contour maps of optimum and marginal conditions of these parameters for four strains of A. flavus on three different non-GM and isogenic GM-maize based nutritional media. The growth of the four strains of A. flavus (three aflatoxigenic; one non-aflatoxigenic) was relatively similar in relation to the temperature × aw conditions examined on both non-GM and GM-based matrices. Optimum growth overall was at 30–35 °C and 0.99 aw for all four strains. Under water stress (0.90 aw) growth was optimum at 35 °C. Statistically: non-GM, GM cultivars, temperature and aw all significantly affected growth rates. For AFB1 production, all single and interacting factors were statistically significant except for non-GM × GM cultivar. In conclusion, colonisation of GM- and non-GM nutritional sources was similar for the different A. flavus strains examined. The contour maps will be very useful for understanding the ecological niches for both toxigenic and non-toxigenic strains in the context of the competitive exclusion of those producing aflatoxins.  相似文献   

15.
Mycotoxin contamination of pistachios represents a serious food safety hazard. The aim of this study was to evaluate fungal contamination and aflatoxin (AF) and ochratoxin A (OTA) occurrence in pistachio sampled in Algeria and to study the mycotoxigenic capacities of the isolates. A total of 31 pistachio samples were collected from retail outlets from different regions of Algeria. The most frequently found fungi were Penicillium spp. (38%), Aspergillus section Nigri (30%) and A. flavus (22%). A total of 56.5% of A. flavus isolates were able to produce AFB1 and AFB2. No A. section Nigri uniseriate isolate was OTA producer, whereas OTA production capacity was detected in 33.3% of the A. section Nigri biseriate. At least one of the potentially ochratoxigenic species was found in 64.5% of samples. Despite the high number of pistachio samples containing AFs and OTA-producing isolates, only two samples contained AFs (always below the EU maximum tolerable level) and only one sample showed OTA contamination. This is the first report on the occurrence of toxigenic moulds and mycotoxins in pistachios from Algerian market.  相似文献   

16.
The spore productivity and insecticidal activity of two opportunistic insect pathogenic Aspergillus species (namely: Aspergillus clavatus Desmazieres and Aspergillus flavus Link (Ascomycota: Eurotiales, Trichocomaceae)) were compared to Metarhizium anisopliae sensu lato (Metchnikoff) Sorokin (Ascomycota: Hypocreales, Clavicipitaceae) for mosquito (Diptera: Culicidae) control. The production of aerial spores on wheat bran and white rice was investigated in solid-, semi-solid-, and liquid-state media supplemented with a nutritive solution. Wheat bran-based media increased the spore yield in solid-state from three to sevenfold: A. clavatus produced 48.4?±?5.2 and 15.7?±?1.6?×?108 spores/g, A. flavus produced 22.3?±?4.1 and 3.1?±?2.5?×?108 spores/g, and M. anisopliae produced 39.6?±?6.5 and 13.1?±?2.6?×?108 spores/g of wheat bran or white rice, respectively. A. clavatus, A. flavus and M. anisopliae spores harvested from wheat bran-based solid-state media showed lethal concentrations (LC50) of 1.1, 1.8, and 1.3?×?108 spores/ml against Culex quinquefasciatus Say larvae in 72?h. Because A. clavatus and M. anisopliae displayed similar features when cultured under these conditions, our results suggest that insect pathogenic Aspergillus species may be as productive and virulent against mosquito larvae as a well-recognised entomopathogenic fungus.  相似文献   

17.
Potentially ochratoxigenic Aspergillus and Penicillium species were identified and the natural occurrence of ochratoxin A (OTA) in corn kernels was evaluated. Likewise, the capacity to produce OTA by Aspergillus section Nigri and Circumdati was investigated. A total of 50 corn samples for human consumption was collected in the south of Córdoba Province. The surface-disinfected method for mycobiota determination was used. The OTA detection was performed by HPLC. OTA production was tested in strains belonging to section Nigri and Circumdati. Statistical analysis demonstrated that the specie A. flavus was isolated in higher frequency (p<0.01) from corn kernels in DRBC and DG18 media. The percentage of corn kernels contaminated by A. niger var. niger was similar in DRBC and DG18 media. The frequency of grains contaminated by A. flavus and A. niger var. awamori was higher than A. niger var. niger and A. japonicus var. japonicus (p<0.01) in DG18 media. The other potentially ochratoxigenic species, A. ochraceus, was isolated between 5% and 10% of the corn kernels in DG18 and DRBC media, respectively. The OTA producing species P. verrucosum was not isolated. All samples of corn were OTA negative (<1 ng g−1). Thirty strains (25%) of the black Aspergillus were OTA producers. From four strains of A. ochraceus isolated, only one produced OTA. Due to the storage variable conditions could not be adequate in this substrate, the presence of ochratoxigenic strains of section Nigri and OTA needs to be evaluated for a longer time to establish the toxicological risk for human beings. The contamination of stored corn kernels with A. flavus and Aspergillus section Nigri was significant.  相似文献   

18.
Under favorable growth conditions,Aspergillus flavus andA. parasiticus produced aflatoxins on marihuana. Cultures ofA. flavus ATCC 15548 produced both aflat oxin B1(AFB1) and G1(AFG1). The production of AFG1 was substantially greater than that of AFB1. Cultures ofA. flavus NRRL 3251 andA. parasiticus NRRL 2999 produced only AFB1. All natural flora cultures tested negative for aflatoxins. NoAspergilli sporulations were observed in these cultures. In the cultures inoculated with known toxigenic fungi, the highest mean level for total aflatoxins was 8.7 g/g of medium. Marihuana appears not to yield large quantities of these mycotoxins but sufficient levels are present to be a potential health hazard for both the user and the forensic analyst who is in daily contact with such plant material. Careful processing, storage, and sanitation procedures should be maintained with marihuana. If these conditions are disregarded due to the illicit status of marihuana, the potential for mycotoxin contamination must be considered.  相似文献   

19.
Various cultivars of red chilli were collected from a small town named Kunri, located in the province Sindh, Pakistan. This town is a hub of red chilli production in Asia. A total of 69 samples belonging to 6 cultivars were obtained and analysed for the occurrence of aflatoxins and Aspergillus flavus, to explore the potential of resistant and susceptible germplasm. Aflatoxins were detected by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC), while A. flavus was isolated and identified using agar plate, blotter paper, deep freezing and dilution techniques. Molecular characterization using internal transcribed spacer (ITS) 1/4 and A. flavus specific FL1-F/R primers confirmed the identity of A. flavus. The data revealed that 67 and 75% samples contaminated with aflatoxin B1 (AFB1) and with A. flavus, respectively. A highly susceptible chilli cultivar was ‘Nagina’, showing 78.8% frequency of total aflatoxins (1.2–600 μg/kg) and a mean of 87.7 μg/kg for AFB1 and 121.9 μg/kg for total aflatoxins. A. flavus was detected with 93% frequency and 2.14 × 104 colony forming units. In contrast, cultivars ‘Kunri’ and ‘Drooping Type’ were found to be resistant, with low levels of aflatoxins and fungal counts. The study was conducted for the first time to explore two potential cultivars that were less susceptible towards A. flavus and aflatoxin contamination. These cultivars could be preferably cultivated and thereby boost Pakistan’s chilli production.  相似文献   

20.
Aflatoxins are carcinogenic, teratogenic and immunosuppressive secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin contamination of peanut is one of the most important constraints to peanut production worldwide. In order to develop an eco-friendly method of prevention of A. flavus infection and aflatoxin contamination in peanut, aqueous extracts obtained from leaves of 30 medicinal plants belonging to different families were evaluated for their ability to inhibit the growth of A. flavus in vitro. Among them the leaf extract of zimmu (Allium sativum L. × Allium cepa L.) was the only one that showed antifungal activity against A. flavus and recorded 73% inhibition of A. flavus growth. The antifungal activity of the zimmu extract was significantly decreased upon dialysis with a dialysis membrane having molecular cut off 12 kDa or autoclaving at 121°C for 20 min or boiling at 100°C for 10 min and recorded inhibition of 52, 16 and 21%, respectively. When A. flavus was grown in medium containing zimmu extract the production of aflatoxin B1 (AFB1) was completely inhibited even at a concentration of 0.5%. When AFB1 was incubated with zimmu extract a complete degradation of AFB1 was observed 5 days after incubation. When the roots of zimmu were incubated in water containing 70 ng of AFB1/ml, a reduction (by 58.5%) in AFB1 concentration was observed 5 days after incubation. A significant reduction in the population of A. flavus in the soil, kernel infection by A. flavus and aflatoxin contamination in kernels was observed when peanut was intercropped with zimmu. The population of the fungal antagonist, Trichoderma viride in the zimmu-intercropped field increased approximately twofold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号