首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Two methods, the measurement of the response of the basolateral membrane potential (V bl) of proximal tubule cells ofNecturus to step changes in basolateral K+ concentration, and cellular cable analysis, were used to assess the changes in basolateral potassium conductance (G K) caused by a variety of maneuvers. The effects of some of these maneuvers on intracellular K+ activity (a K i ) were also evaluated using double-barreled ion-selective electrodes. Perfusion with 0mm K+ basolateral solution for 15 min followed by 45 min of 1mm K+ solution resulted in a fall in basolateral potassium (apparent) transference number (t K),V bl anda K i . Results of cable analysis showed that total basolateral resistance,R b , rose. The electrophysiological effects of additional manipulations, known to inhibit net sodium reabsorption across the proximal tubular epithelium ofNecturus, were also investigated. Ouabain caused a fall int K accompanied by large decreases ina K i andV bl. Lowering luminal sodium caused a fall int K and a small reduction inV bl. Selective reduction of peritubular sodium, a maneuver that has been shown to block sodium transport from lumen to peritubular fluid, also resulted in a significant decrease int K. These results suggest thatG K varies directly with rate of transport of the sodium pump, irrespective of the mechanism of change in pump turnover.Part of this material has been presented at the 10th International Conference on Biological Membranes (Cohen & Giebisch, 1984).  相似文献   

2.
Summary We have measured the intracellular potassium activity, [K+]i and the mechanisms of transcellular K+ transport in reabsorptive sweat duct (RSD) using intracellular ion-sensitive microelectrodes (ISMEs). The mean value of [K+]i in RSD is 79.8±4.1mm (n=39). Under conditions of microperfusion, the [K+]i is above equilibrium across both the basolateral membrane, BLM (5.5 times) and the apical membrane, APM (7.8 times). The Na+/K+ pump inhibitor ouabain reduced [K+]i towards passive distribution across the BLM. However, the [K+]i is insensitive to the Na+/K+/2 Cl cotransport inhibitor bumetanide in the bath. Cl substitution in the lumen had no effect on [K+]i. In contrast, Cl substitution in the bath (basolateral side) depolarized BLM from –26.0±2.6 mV to –4.7*±2.4 mV (n=3;* indicates significant difference) and decreased [K+]i from 76.0±15.2mm to 57.7* ±12.7mm (n=3). Removal of K+ in the bath decreased [K+]i from 76.3±15.0mm to 32.3*±7.6mm (n=4) while depolarizing the BLM from –32.5±4.1 mV to –28.3*±3.0 mV (n=4). Raising the [K+] in the bath by 10-fold increased [K+]i from 81.7±9.0mm to 95.0*±13.5mm and depolarized the BLM from –25.7±2.4 mV to –21.3*±2.9 mV (n=4). The K+ conductance inhibitor, Ba2+, in the bath also increased [K+]i from 85.8±6.7mm to 107.0*±11.5mm (n=4) and depolarized BLM from –25.8±2.2 mV to –17.0*±3.1 mV (n=4). Amiloride at 10–6 m increased [K+]i from 77.5±18.8mm to 98.8*±21.6mm (n=4) and hyperpolarized both the BLM (from –35.5±2.6 mV to –47.8*±4.3 mV) and the APM (from –27.5±1.4 mV to –46.0* ±3.5 mV,n=4). However, amiloride at 10–4 m decreased [K+]i from 64.5±0.9mm to 36.0*±9.9mm and hyperpolarized both the BLM (from –24.7±1.4 mV to –43.5*±4.2 mV) and APM (from –18.3±0.9 mV to –43.5*±4.2 mV,n=6). In contrast to the observations at the BLM, substitution of K+ or application of Ba2+ in the lumen had no effect on the [K+]i or the electrical properties of RSD, indicating the absence of a K+ conductance in the APM. Our results indicate that (i) [K+]i is above equilibrium due to the Na+/K+ pump; (ii) only the BLM has a K+ conductance; (iii) [K+]i is subject to modulation by transport status; (iv) K+ is probably not involved in carrier-mediated ion transport across the cell membranes; and (v) the RSD does not secrete K+ into the lumen.  相似文献   

3.
Summary The chloride conductance of the basolateral cell membrane of theNecturus proximal tubule was studied using conventional and chloride-sensitive liquid ion exchange microelectrodes. Individual apical and basolateral cell membrane and shunt resistances, transepithelial and basolateral, cell membrane potential differences, and electromotive forces were determined in control and after reductions in extracellular Cl. When extracellular Cl activity is reduced in both apical and basolateral solutions the resistance of the shunt increases about 2.8 times over control without any significant change in cell membrane resistances. This suggests a high Cl conductance of the paracellular shunt but a low Cl conductance of the cell membranes. Reduction of Cl in both bathing solutions or only on the basolateral side hyperpolarizes both the basolateral cell membrane potential difference and electromotive force. Hyperpolarization of the basolateral cell membrane potential difference after low Cl perfusion was abolished by exposure to HCO 3 -free solutions and SITS treatment. In control conditions, intracellular Cl activity was significantly higher than predicted from the equilibrium distribution across both the apical and basolateral cell membranes. Reducing Cl in only the basolateral solution caused a decrease in intracellular Cl. From an estimate of the net Cl flux across the basolateral cell membrane and the electrochemical driving force, a Cl conductance of the basolateral cell membrane was predicted and compared to measured values. It was concluded that the Cl conductance of the basolateral cell membrane was not large enough to account for the measured flux of Cl by electrodiffusion alone. Therefore these results suggest the presence of an electroneutral mechanism for Cl transport across the basolateral cell membrane of theNecturus proximal tubule cell.  相似文献   

4.
Summary Monolayers of human proximal tubule (HPT) cells, when grown on permeable supports and mounted in Ussing chambers, spontaneously display a transepithelial potential difference (PD), short-circuit current (Isc), and transepithelial specific resistance (RT). These electrical parameters were used to determine the degree of heterogeneity among independent isolates of human proximal tubule cell cultures. Seventeen independent isolates of cells were assessed, totaling 260 individual determinations of spontaneous electrical properties. On average, these cell monolayers displayed an apicalnegative PD of 1.5 ± 0.1 mV, an Isc of 2.7 ± 0.2 μA/cm2, and an RT of 480 ± 19 ohms × cm2. Each independent cell isolate, however, displayed electrical values within a narrow range, in some cases allowing isolates to be distinguished from one another. The individual isolates were also assessed for Na-coupled glucose transport, Na+,K+-ATPase activity, cAMP stimulation by parathyroid hormone (PTH), forskolin stimulation of Isc, and ouabain inhibition. With the exception of a strong correlation between Na+,K+-ATPase activity and Isc, these parameters, in contrast to electrical properties, were found to be consistent and did not reveal distinctions among the isolates. HPT cell cultures seem to consistently retain important features of proximal tubule differentiation while maintaining the variability, as demonstrated by electrical properties, that might be expected of cells isolated from a random population.  相似文献   

5.
Summary The effects of stepwise concentration changes of K+ and HCO 3 in the basolateral solution on the basolateral membrane potential (V bl) of proximal tubule cells of the doubly-perfusedNecturus kidney were examined using conventional microelectrodes. Apparent transference numbers were calculated from changes inV bl after alterations in external K+ concentration from 1.0 to 2.5mm (t K, 1.0–2.5), 2.5 to 10, and in external HCO 3 concentration (at constant pH) from 5 to 10mm (t HCO3, 5–10), 10 to 20, or 10 to 50.t K, 2.5–10 was 0.38±0.02 under control conditions but was sharply reduced to 0.08±0.03 (P>0.001) by 4mm Ba++. This concentration of Ba++ reducedV bl by 9±1 mV (at 2.5 external K+). Perfusion with SITS (5×10–4 m) for 1 hr hyperpolarizedV bl by 10±3 mV and increasedt K, 2.5–10 significantly to 0.52±0.01 (P<0.001). Ba++ application in the presence of SITS depolarizedV bl by 22±3 mV. In control conditionst HCO3, 10–50 was 0.63±0.05 and was increased to 0.89±0.07 (P<0.01) by Ba++ but was decreased to 0.14±0.02 (P<0.001) by SITS. In the absence of apical and basolateral chloride, the response ofV bl to bicarbonate was diminished but still present (t HCO3, 10–20 was 0.35±0.03). Intracellular pH, measured with liquid ion-exchange microelectrodes, increased from 7.42±0.19 to 7.57±0.17 (P<0.02) when basolateral bicarbonate was increased from 10 to 20mm at constant pH. These data show that the effects of bicarbonate onV bl are largely independent of effects on the K+ conductance and that there is a significant current-carrying bicarbonate pathway in the basolateral membrane. Hence, both K+ and HCO 3 gradients are important in the generation ofV bl, and their relative effects vary reciprocally.  相似文献   

6.
Summary Potassium fluxes in a suspension of rabbit proximal tubules were monitored using a potassium-sensitive extracellular electrode. Ouabain (10–4 m) and barium (5mm) were used to selectively quantitate the potassium efflux pathway (105±5 nmol K+·mg protein–1·min–1) and the sodium pump-related potassium influx (108±7), respectively. These equal and opposite fluxes suggest that potassium accumulation in the cell occurs mainly through the sodium pump and that potassium efflux occurs mainly through barium-sensitive potassium channels. Thus the activity of the sodium pump (Na, K-ATPase) in the basolateral membrane of the proximal tubule is balanced by the efflux of potassium, presumably across the basolateral membrane, which has a high potassium permeability. In addition, the effect of valinomycin and other ionophores was examined on potassium fluxes and several metabolic parameters [oxygen consumption (QO2), ATP content]. The addition of valinomycin to the tubules produced a net efflux of potassium which was quantitatively equivalent to the efflux produced by the addition of ouabain. The valinomycin-induced efflux was mainly due to the activity of valinomycin as a mitochondrial uncoupler, which indirectly inhibited the sodium pump by allowing a rapid reduction of the intracellular ATP. Amphotericin, nystatin, and monensin all produced large net releases of intracellular potassium. The action of the ionophores could be localized to the plasma or mitochondrial membrane and classified into three groups, as follows: (a) those which demonstrated full mitochondrial uncoupler activity (FCCP, valinomycin), (b) those which had no uncoupler activity (amphotericin B, nystatin); and (c) those which displayed partial uncoupler activity (monensin, nigericin).  相似文献   

7.
Summary Conventional microelectrodes were used to study the effects of SITS (4-acetamido-4-isothiocyanostilbene-2,2-disulfonate) on the basolateral membrane potentialVbl of the superficial proximal straight tubule (PST) of the rabbit kidney perfusedin vitro. Addition of 0.1mm SITS to the bathing solution resulted in a slow and irreversible hyperpolarization ofVbl from –42.5±1.17 (37) mV to –77.3±0.83 (52) mV. The new steady-state potential was reached in 10 to 15 min and was accompanied by visible cell swelling. Associated with thisVbl hyperpolarization was: 1) an increased steady-state depolarization (from 6.2±0.77 (17) mV to 25.7±0.83 (29) mV) in response to increasing bath potassium concentration from 5 to 16.7mm (HK); 2) a decreased transient depolarization (from 19.8±1.88 (8) mV to 0.43±0.37 (8) mV) in response to decreasing bath bicarbonate concentration from 22 to 6.6mm at constant bath pH (L-HCO3); and 3) inhibition of a depolarizing overshoot and a decreased steady-state depolarization (from 35.9±1.84 (12) mV to 4.7±1.37 (13) mV) in response to reducing bath sodium concentration from 144 to zero (0-Na). Sodium, chloride and NMDG (N-methyl-d-glucamine) were used as the substituting ions, respectively. These results are consistent with the presence of a coupled sodium-bicarbonate carrier in the basolateral membrane which is electrogenic and SITS inhibitable. Comparison of the time course of SITS effects on these ion-substitution responses suggests that the inhibition of the bicarbonate exit pathway(s) is the primary event and that the changes inVbl and in the steady-stateVbl responses to HK and 0-Na are secondary events which may be related to changes in intracellular composition and/or basolateral membrane properties.  相似文献   

8.
Summary In a previous study we presented evidence that chloride transport across the basolateral membrane inNecturus proximal tubule cells occurs predominantly via exchange for both Na+ and HCO 3 . In this study the regulation of intracellular chloride was further examined in the doubly-perfused kidney preparation using conventional and chloride-sensitive microelectrodes. Application of hypertonic basolateral solutions containing 80mm raffinose stimulated an efflux of chloride such that chloride activity remained unchanged at control levels. Membrane potential did not change in these experiments. Inhibition of Cl exit across the basolateral cell membrane by removal of either HCO 3 or Na+ from the perfusion solution resulted in a significant increase in intracellular chloride activity,a Cl i , when basolateral osmolarity was raised. Hypertonic basolateral solutions also produced a significant rise ina Cl i in the presence of SITS.This study provides further evidence that chloride is transported across the basolateral cell membrane in exchange for both Na+ and HCO 3 . Since this exchange mechanism is activated in response to hypertonic solutions, these studies suggest a functional role for this exchanger in the regulation ofa Cl i in theNecturus proximal tubule cell during volume changes.  相似文献   

9.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

10.
Summary The relationship between water and sodium movements through the mammalian proximal convoluted tubule was investigated by substituting lithium for sodium. Proximal convoluted rat Kidney tubules were perfusedin vivo with a Ringer solution containing 107 meq/liter lithium and 42 meq/liter sodium. Several micropunctures were made along the same nephron, and [3H] inulin, [14C] glucose,22Na, osmolality, Na, Mg and Cl were determined on each sample. Measurements of22Na showed that sodium and lithium diffusion rates were practically identical throughout the entire epithelium. A one- for-one exchange of sodium for lithium induced a negative trans-epithelial net flux of Na from plasma to lumen. However, despite this negative flux, a positive net water movement was measured from lumen to plasma. This movement was proportional both to glucose reabsorption and to the rise in the chloride concentration, two mechanisms known to be dependent on the trans-cellular movement of sodium. It was therefore concluded that the net water flux was a function of the unidirectional transcellular net flux of Na.Rabbit proximal convoluted tubules were perfusedin vitro with a solution containing 75 meq/liter Li and 75 meq/liter Na on both the luminal and peritubular sides. Under these conditions, the water reabsorption rate dropped to half its control value. Water movement was therefore a function of the external sodium concentration, which in turn probably regulates the intracellular Na concentration.  相似文献   

11.
Summary Techniques were developed for the measurement of intracellular potentials and potassium activities in rat proximal tubule cells using double barreled K+ liquid-ion-exchanger microelectrodes. After obtaining measurements of stable and reliable control values, the effects of K+ depletion and metabolic and respiratory acidosis on the intracellular potential and K+ activity in rat kidney proximal tubular cells were determined. At a peritubular membrane potential of –66.3±1.3 mV (mean±se), intracellular K+ activity was 65.9±2.0 mEq/liter in the control rats. In metabolic acidosis [70 mg NH4 Cl/100 g body wt) the peritubular membrane potential was significantly reduced to –47.5±1.9 mV, and cellular K+ activity to 53.5±2.0 mEq/liter. In contrast, in respiratory acidosis (15% CO2) the peritubular membrane potential was significantly lowered to –46.1±1.39 mV, but the cellular K+ activity was maintained at an almost unchanged level of 63.7±1.9 mEq/liter. In K+ depleted animals (6 weeks on low K+ diet), the peritubular membrane potential was significantly higher than in control animals, –74.8±2.1 mV, and cellular K+ activity was moderately but significantly reduced to 58.1±2.7 mEq/liter. Under all conditions studied, cellular K+ was above electrochemical equilibrium. Consequently, an active mechanism for cellular K+ accumulation must exist at one or both cell membranes. Furthermore, peritubular HCO3 appears to be an important factor in maintaining normal K+ distribution across the basolateral cell membrane.  相似文献   

12.
Summary The ultrastructure of the plasma membrane and the core of microvilli of proximal tubule cells has been investigated by electron microscopy using sectioned and negatively stained material. By the technique of negative staining, a particulated coat is disclosed on the outside of the plasma membrane of microvilli of brush borders isolated from rat, rabbit and ox. This coat is composed of 30 to 60 Å particles and is 150 to 300 Å thick and appears to be a distinguishing feature for the luminal plasma membrane (brush border) of proximal tubule cells. The plasma membrane of the basal part of tubule cells is found to be smooth. By thin sectioning, an axial bundle of 50 to 70 Å diameter filaments regularly arranged in an 1+6 configuration, one axially located filament being surrounded by a ring of six, is disclosed. The distance from the ring of filaments to the inner surface of the plasma membrane is 250–300 Å, the diameter of the ring 300 Å and the center-to-center distance between filaments 120 Å. Negative staining also discloses 60 Å filaments in microvilli of isolated brush borders. Broken off, single microvilli (fingerstalls) are observed with thin filaments projecting from their broken ends. Filaments up to 1 in length are seen. At high magnification, the filaments appear beaded and show strong resemblance with actin filaments isolated from skeletal muscle. Based on present evidence, it is postulated that microvilli constituting renal brush borders possess contractile properties, which may play a role in the absorption process operating at the luminal part of the cells.The authors are indebted to Miss Kirsten Sjöberg for skilled technical assistance, and to the Danish State Research Foundation and the Tuborg Foundation for financial support.  相似文献   

13.
Summary The present study was designed to assess for the influence of extracellular potassium and of inhibitors of potassium transport on cell volume regulatory decrease in isolated perfused straight proximal tubules of the mouse kidney. Volume regulatory decrease is virtually unaffected when bath potassium concentration is elevated from 5 to 20 mmol/liter, and still persists, albeit significantly retarded, in the presence of the potassium channel blocker barium on both sides of the epithelium and during virtually complete dissipation of the transmembrane potassium gradient by increasing extracellular potassium concentration to 40 mmol/liter. As evident from electrophysiologic observations, barium blocks the potassium conductance of the basolateral cell membrane. Reduction of bicarbonate concentration and increase of H+ concentration in the bath solution cannot compensate for enhanced potassium concentration and cell volume regulatory decrease is not affected in the presence of the K/H exchange inhibitor omeprazole. Similarly cell volume regulatory decrease is not affected by ouabain. In conclusion, potassium movements through potassium channels in the basolateral cell membrane are important determinants of cell volume and may participate in cell volume regulatory decrease. However, a powerful component of cell volume regulatory decrease in straight proximal tubules of the mouse kidney is apparently independent of potassium conductive pathways, K/H exchange and Na+/K+-ATPase.  相似文献   

14.
Summary The apical membrane K+ permeability of the newt proximal tubular cells was examined in the doubly perfused isolated kidney by measuring the apical membrane potential change (V a change) during alteration of luminal K+ concentration and resultant voltage deflections caused by current pulse injection into the lumen.V a change/decade for K+ was 50 mV at K+ concentration higher than 25mm, and the resistance of the apical membrane decreased bt 58% of control when luminal K+ concentration was increased from 2.5 to 25mm. Ba2+ (1mm in the lumen) reducedV a change/decade to 24 mV and increased the apical membrane resistance by 70%. These data support the view that Ba2+-sensitive K+ conductance exists in the apical membrane of the newt proximal tubule. Furthermore, intracellular K+ activity measured by K+-selective electrode was 82.4 ± 3.6 meq/liter, which was higher than that predicted from the Nernst equation for K+ across both cell membranes. Thus, it is concluded that cell K+ passively diffuses, at least in part, through the K+ conductive pathway of the apical membrane.  相似文献   

15.
Summary The cellular mechanisms by which nephrotoxic heavy metals injure the proximal tubule are incompletely defined. We used extracellular electrodes to measure the early effects of heavy metals and other sulfhydryl reagents on net K+ and Ca2+ transport and respiration (QO2) of proximal tubule suspensions. Hg2+, Cu2+, and Au3+ (10–4 m) each caused a rapid net K+ efflux and a delayed inhibition of QO2. The Hg2+-induced net K+ release represented passive K+ transport and was not inhibited by barium, tetraethylammonium, or furosemide. Both Hg2+ and Ag+ promoted a net Ca2+ uptake that was nearly coincident with the onset of the net K+ efflux. A delayed inhibition of ouabainsensitive QO2 and nystatin-stimulated QO2, indicative of Na+, K+-ATPase inhibition, was observed after 30 sec of exposure to Hg2+. More prolonged treatment (2 min) of the tubules with Hg2+ resulted in a 40% reduction in the CCCP-uncoupled QO2, indicating delayed injury to the mitochondria. The net K+ efflux was mimicked by the sulfhydryl reagents pCMBS and N-ethylmaleimide (10–4 m) and prevented by dithiothreitol (DTT) or reduced glutathione (GSH) (10–4 m). In addition, both DTT and GSH immediately reversed the Ag+-induced net Ca2+ uptake. Thus, sulfhydryl-reactive heavy metals cause rapid, dramatic changes in the membrane ionic permeability of the proximal tubule before disrupting Na+, K+-ATPase activity or mitochondrial function. These alterations appear to be the result of an interaction of the metal ions with sulfhydryl groups of cell membrane proteins responsible for the modulation of cation permeability.  相似文献   

16.
Summary To study the possible role of intracellular Ca (Ca i ) in controlling the activities of the Na+–K+ pump, the Na+–K+ cotransport and the Na+/Li+ exchange system of human erythrocytes, a method was developed to measure the amount of Ca embodied within the red cell. For complete removal of Ca associated with the outer aspect of the membrane, it proved to be essential to wash the cells in buffers containing less than 20nm Ca. Ca was extracted by HClO4 in Teflon® vessels boiled in acid to avoid Ca contaminations and quantitated by flameless atomic absorption. Ca i of fresh human erythrocytes of apparently healthy donors ranged between 0.9 and 2.8 mol/liter cells. The mean value found in females was significantly higher than in males. The interindividual different Ca contents remained constant over periods of more than one year. Sixty to 90% of Ca i could be removed by incubation of the cells with A23187 and EGTA. The activities of the Na+–K+ pump, of Na+–K+ cotransport and Na+/Li+ exchange and the mean cellular hemoglobin content fell with rising Ca i ; the red cell Na+ and K+ contents rose with Ca i . Ca depletion by A23187 plus EGTA as well as chelation of intracellular Ca2+ by quin-2 did not significantly enhance the transport rates. It is concluded that the large scatter of the values of Ca i of normal human erythrocytes reported in the literature mainly results from a widely differing removal of Ca associated with the outer aspect of the membrane.  相似文献   

17.
Recently, our group described an AT1-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na+-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na+-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na+-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na+-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

18.
Summary The purpose of this study was to characterize the basolateral membrane of the S3 segment of the rabbit proximal tubule using conventional and ion-selective microelectrodes. When compared with results from S1 and S2 segments, S3 cells under control conditions have a more negative basolateral membrane potential (V bl=–69 mV), a higher relative potassium conductance (t K=0.6), lower intracellular Na+ activity (A Na=18.4mm), and higher intracellular K+ activity (A K=67.8mm). No evidence for a conductive sodium-dependent or sodium-independent HCO 3 pathway could be demonstrated. The basolateral Na–K pump is inhibited by 10–4 m ouabain and bath perfusion with a potassium-free (0-K) solution. 0-K perfusion results inA Na=64.8mm,A K=18.5mm, andV bl=–28 mV. Basolateral potassium channels are blocked by barium and by acidification of the bathing medium. The relative K+ conductance, as evaluated by increasing bath K+ to 17mm, is dependent upon the restingV bl in both S2 and S3 cells. In summary, the basolateral membrane of S3 cells contains a pump-leak system with similar properties to S1 and S2 proximal tubule cells. The absence of conductive bicarbonate pathways results in a hyperpolarized cell and larger Na+ and K+ gradients across the cell borders, which will influence the transport properties and intracellular ion activities in this tubule segment.  相似文献   

19.
20.
In the proximal convoluted tubule (PCT) angiotensin II (Ang II) modulates fluid and electrolyte transport through at least two pharmacologically distinct receptor subtypes: AT(1) and AT(2). Development of cell lines that lack these receptors are potentially useful models to probe the complex cellular details of Ang II regulation. To this end, angiotensin receptor- deficient mice were bred with an Immortomouse(R), which harbors a thermolabile SV40 large-T antigen (Tag). S1 PCT segments from kidneys of F(2) mice were microdissected, placed in culture, and maintained under conditions that enhanced cell growth, i.e., promoted Tag expression and thermostability. Three different types of angiotensin receptor-deficient cell lines, (AT(1A) [-/-], Tag [+/-]), (AT(1B) [-/-], Tag [+/-]), and (AT(1A) [-/-], AT(1B) [-/-], Tag [+/+]), as well as wild type cell lines were generated. Screening and characterization, which were conducted under culture conditions that promoted cellular differentiation, included: measurements of transepithelial transport, such as basal monolayer short-circuit current (Isc; -3 to 3 microA/cm2), basal monolayer conductance (G, 2 to 10 mS/cm2), Na3(+)-phosphate cotransport (DeltaIsc of 2 to 3 microA/cm(2) at 1 mM), and Na(3)(+)-succinate cotransport (DeltaIsc of 1 to 9 microA/cm(2) at 2 mM). Morphology of cell monolayers showed an extensive brush border, well-defined tight junctions, and primary cilia. Receptor functionality was assessed by Ang II-stimulated beta-arrestin 2 translocation and showed an Ang II-mediated response in wild type but not (AT(1A) [-/ -], AT(1B) [-/-]) cells. Cell lines were amplified, yielding a virtually unlimited supply of highly differentiated, transport-competent, angiotensin receptor-deficient PCT cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号