首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The possible correlation between P-glycoprotein (PGP) and volume-sensitive Cl channel was examined in a pair of cell lines: a subline of the human epidermoid KB cell (KB-3-1) and the corresponding MDR1-transfected cell line (KB-G2). Western blot analysis and indirect immunofluorescence studies indicated that KB-G2, but not KB-3-1, exhibits the PGP expression. Patch-clamp whole-cell recordings showed that osmotic swelling activates Cl currents not only in PGP-expressing but also in PGP-lacking cells. The amplitude of the maximal current was indistinguishable between both cells. Activation of protein kinase C (PKC) or loading with a PKC inhibitor failed to affect the swelling-induced activation of the Cl currents in both cells. The relation between whole-cell Cl currents and cell size measured simultaneously showed that volume sensitivity of the Cl channel was augmented by the PGP expression irrespective of the activity of PKC on the plasma membrane. A similar increase in volume sensitivity of the Cl channel was also induced by the expression of the ATP hydrolysis-deficient PGP mutant, K433M. We conclude that P-glycoprotein does not represent the volume-sensitive Cl channel but that its expression modulates volume sensitivity of the Cl channel in a manner independent of its ATPase activity or of the protein kinase C activity. Received: 25 September 1996/Revised: 12 December 1996  相似文献   

2.
Cell-volume changes induced by terbutaline (a specific β2-agonist) were studied morphometrically in rat fetal distal lung epithelium (FDLE) cells. Cell-volume changes qualitatively differed with the concentration of terbutaline. Terbutaline of 10−10–10−8 m induced transient cell swelling. Terbutaline of 10−7 m induced transient cell swelling followed by slow cell shrinkage. Terbutaline of 10−6–10−5 m induced rapid cell shrinkage followed by slow cell shrinkage. Terbutaline of 10−3 m induced transient cell shrinkage; then cell volume oscillated during stimulation. Benzamil of 10−6 m suppressed the cell swelling induced by 10−10–10−8 m terbutaline and quinine of 10−3 m inhibited the cell shrinkage induced by 10−6–10−5 m terbutaline. These results suggest that cell swelling would be induced by NaCl influx and the cell shrinkage is by KCl efflux. Dibutyryl cyclic AMP (DBcAMP) also induced similar cell-volume changes over a wide range of concentrations (10−9–10−3 m): a low concentration induced transient cell swelling; a high concentration, rapid and slow cell shrinkage. Forskolin (10−4 m), like terbutaline (10−5 m), induced rapid cell shrinkage followed by slow cell shrinkage, and this decrease in the cell volume was enhanced by the presence of benzamil. On the other hand, cell shrinkage was induced by ionomycin (even low concentration; 3 × 10−10 m ionomycin), and after that cell volume remained at a plateau level. Removal of extracellular Ca2+ abolished the cell swelling caused by terbutaline of 10−10–10−8 m. With removal of extracellular Ca2+, the initial, rapid cell shrinkage induced by 10−5 m terbutaline became transient, but we still detected slow cell shrinkage similar to that in the presence of extracellular Ca2+. Overall, at low concentrations (10−10–10−8 m), terbutaline induced benzamil-sensitive cell swelling in FDLE cells, which was cAMP- and Ca2+-dependent; high concentrations (≥−6) induced quinine-sensitive rapid cell shrinkage, which was Ca2+-dependent; high concentrations (≥−7) induced slow cell shrinkage, which was cAMP-dependent. These findings suggest that terbutaline regulates cell volume in FDLE cells by cytosolic cAMP and Ca2+ through activation of Na+ and K+ channels. Received: 13 March 1995/Revised: 17 January 1996  相似文献   

3.
Mechanically Activated Currents in Chick Heart Cells   总被引:7,自引:0,他引:7  
As predicted from stretch-induced changes of rate and rhythm in the heart, acutely isolated embryonic chick heart cells exhibit whole-cell mechanosensitive currents. These currents were evoked by pressing on cells with a fire polished micropipette and measured through a perforated patch using a second pipette. The currents were carried by Na+ and K+ but not Cl, and were independent of external Ca2+. The currents had linear I/V curves reversing at −16 mV and were completely blocked by Gd3+≥ 30 μm and Grammostola spatulata venom at a dilution of 1:1000. Approximately 20% of cells showed time dependent inactivation. In contrast to direct mechanical stimulation, hypotonic volume stress produced an increase in conductance for anions rather than cations—the two stimuli are not equivalent. The cells had two types of stretch-activated ion channels (SACs): a 21 pS nonspecific cation-selective reversing at −2 mV and a 90 pS K+ selective reversing at −70 mV in normal saline. The activity of SACs was strongly correlated with the presence of whole-cell currents. Both the whole-cell currents and SACs were blocked by Gd3+ and by Grammostola spatulata spider venom. Mechanical stimulation of spontaneously active cells increased the beating rate and this effect was blocked by Gd3+. We conclude that physiologically active mechanosensitive currents arise from stretch activated ion channels. Received: 8 April 1996/Revised: 8 August 1996  相似文献   

4.
Osmotic swelling of fish erythrocytes activates a broad-specificity permeation pathway that mediates the volume-regulatory efflux of taurine and other intracellular osmolytes. This pathway is blocked by inhibitors of the erythrocyte band 3 anion exchanger, raising the possibility that band 3 is involved in the volume-regulatory response. In this study of eel erythrocytes, a quantitative comparison of the pharmacology of swelling-activated taurine transport with that of band 3-mediated SO2− 4 transport showed there to be significant differences between them. N-ethylmaleimide and quinine were effective inhibitors of swelling-activated taurine transport but caused little, if any, inhibition of band 3. Conversely, DIDS was a more potent inhibitor of band 3-mediated SO2− 4 flux than of swelling-activated taurine transport. In cells in isotonic medium, pretreated then co-incubated with 0.1 mm DIDS, the band 3-mediated transport of SO2− 4 and Cl was reduced to a low level. Exposure of these cells to a hypotonic medium containing 0.1 mm DIDS was followed by the activation of a Cl permeation pathway showing the same inhibitor sensitivity as swelling-activated taurine transport. The data are consistent with swelling-activated transport of taurine and Cl being via a common pathway. A comparison of the swelling-activated transport rates for taurine and Cl with those for several other solutes was consistent with the hypothesis that this pathway is an anion-selective channel, similar to those that mediate the volume-regulatory efflux of Cl and organic osmolytes from mammalian cells. Received: 7 July 1995/Revised: 2 September 1995  相似文献   

5.
Cell swelling activates an outwardly rectifying anion current in numerous mammalian cell types. An extensive body of evidence indicates that the channel responsible for this current is the major pathway for volume regulatory organic osmolyte loss. Cell swelling also activates an outwardly rectifying anion current in Xenopus oocytes. Unlike mammalian cells, oocytes allow the direct study of both swelling-activated anion current and organic osmolyte efflux under nearly identical experimental conditions. We therefore exploited the unique properties of oocytes in order to examine further the relationship between anion channel activity and swelling-activated organic osmolyte transport. Swelling-activated anion current and organic osmolyte efflux were studied in parallel in batches of oocytes obtained from single frogs. The magnitude of swelling-activated anion current and organic osmolyte efflux exhibited a positive linear correlation. In addition, the two processes had similar pharmacological characteristics and activation, rundown and reactivation kinetics. The present study provides further strong support for the concept that the channel responsible for swelling-activated Cl efflux and the outwardly rectifying anion conductance is also the major pathway by which organic osmolytes are lost from vertebrate cells during regulatory volume decrease. Received: 22 April 1996/Revised: 18 December 1996  相似文献   

6.
To study vacuolar chloride (Cl) transport in the halophilic plant Mesembryanthemum crystallinum L., Cl uptake into isolated tonoplast vesicles was measured using the Cl-sensitive fluorescent dye lucigenin (N,N′-dimethyl-9,9′-bisacridinium dinitrate). Lucigenin was used at excitation and emission wavelengths of 433 nm and 506 nm, respectively, and showed a high sensitivity towards Cl, with a Stern-Volmer constant of 173 m −1 in standard assay buffer. While lucigenin fluorescence was strongly quenched by all halides, it was only weakly quenched, if at all, by other anions. However, the fluorescence intensity and Cl-sensitivity of lucigenin was shown to be strongly affected by alkaline pH and was dependent on the conjugate base used as the buffering ion. Chloride transport into tonoplast vesicles of M. crystallinum loaded with 10 mm lucigenin showed saturation-type kinetics with an apparent K m of 17.2 mm and a V max of 4.8 mm min−1. Vacuolar Cl transport was not affected by sulfate, malate, or nitrate. In the presence of 250 μm p-chloromercuribenzene sulfonate, a known anion-transport inhibitor, vacuolar Cl transport was actually significantly increased by 24%. To determine absolute fluxes of Cl using this method, the average surface to volume ratio of the tonoplast vesicles was measured by electron microscopy to be 1.13 × 107 m−1. After correcting for a 4.4-fold lower apparent Stern-Volmer constant for intravesicular lucigenin, a maximum rate of Cl transport of 31 nmol m−2 sec−1 was calculated, in good agreement with values obtained for the plant vacuolar membrane using other techniques. Received: 18 February 2000/Revised: 30 June 2000  相似文献   

7.
Ehrlich ascites tumor cells, loaded with 3H-labeled arachidonic acid and 14C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo-osmotic exposure the rate of 3H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of 14C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A2 is activated by cell swelling in the Ehrlich cells. Within the same time frame there is no swelling-induced increase in 14C-labeled stearic acid release nor in the synthesis of phosphatidyl 14C-butanol in the presence of 14C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of 14C-labeled arachidonic acid. Taken together these results exclude involvement of phospholipase A1, C and D in the swelling-induced liberation of arachidonic acid. The swelling-induced release of 3H-labeled arachidonic acid from Ehrlich cells as well as the volume regulatory response are inhibited after preincubation with GDPβS or with AACOCF3, an inhibitor of the 85 kDa, cytosolic phospholipase A2. Based on these results we propose that cell swelling activates a phospholipase A2—perhaps the cytosolic 85 kDa type—by a partly G-protein coupled process, and that this activation is essential for the subsequent volume regulatory response. Received: 23 July 1996/Revised: 17 June 1997  相似文献   

8.
Primary cultures of sea bass gill cells grown on permeable membranes form a confluent, polarized, functional tight epithelium as characterized by electron microscopy and electrophysiological and ion transport studies. Cultured with normal fetal bovine serum (FBS) and mounted in an Ussing chamber, the epithelium presents a small short-circuit current (I sc : 1.4 ± 0.3 μA/cm2), a transepithelial voltage (V t ) of 12.7 ± 2.7 mV (serosal positive) and a high transepithelial resistance (R t : 12302 ± 2477 Ω× cm2). A higher degree of differentiation and increased ion transport capacities are observed with cells cultured with sea bass serum: numerous, organized microridges characteristic of respiratory cells are present on the apical cell surface and there are increased I sc (11.9 ± 2.5 μA/cm2) and V t (25.9 ± 1.7 mV) and reduced R t (4271 ± 568 Ω× cm2) as compared with FBS-treated cells. Apical amiloride addition (up to 100 μm) had no effect on I sc . The I sc , correlated with an active Cl secretion measured as the difference between 36Cl unidirectional fluxes, was partly blocked by serosal ouabain, bumetanide, DIDS or apical DPC or NPPB and stimulated by serosal dB-cAMP. It is concluded that the chloride secretion is mediated by a Na+/K+/2Cl cotransport and a Cl/HCO3 exchanger both responsible for Cl entry through the basolateral membrane and by apical cAMP-sensitive Cl channels. This study gives evidence of a functional, highly differentiated epithelium in cultures composed of fish gill respiratorylike cells, which could provide a useful preparation for studies on ion transport and their regulation. Furthermore, the chloride secretion through these cultures of respiratorylike cells makes it necessary to reconsider the previously accepted sea water model in which the chloride cells are given the unique role of ion transport through fish gills. Received: 12 July 1996/Revised: 5 November 1996  相似文献   

9.
Brush border membrane vesicles, BBMV, from eel intestinal cells or kidney proximal tubule cells were prepared in a low osmolarity cellobiose buffer. The osmotic water permeability coefficient P f for eel vesicles was not affected by pCMBS and was measured at 1.6 × 10−3 cm sec−1 at 23°C, a value lower than 3.6 × 10−3 cm sec−1 exhibited by the kidney vesicles and similar to published values for lipid bilayers. An activation energy E a of 14.7 Kcal mol−1 for water transport was obtained for eel intestine, contrasting with 4.8 Kcal mol−1 determined for rabbit kidney proximal tubule vesicles using the same method of analysis. The high value of E a , as well as the low P f for the eel intestine is compatible with the absence of water channels in these membrane vesicles and is consistent with the view that water permeates by dissolution and diffusion in the membrane. Further, the initial transient observed in the osmotic response of kidney vesicles, which is presumed to reflect the inhibition of water channels by membrane stress, could not be observed in the eel intestinal vesicles. The P f dependence on the tonicity of the osmotic shock, described for kidney vesicles and related to the dissipation of pressure and stress at low tonicity shocks, was not seen with eel vesicles. These results indicate that the membranes from two volume transporter epithelia have different mechanisms of water permeation. Presumably the functional water channels observed in kidney vesicles are not present in eel intestine vesicles. The elastic modulus of the membrane was estimated by analysis of swelling kinetics of eel vesicles following hypotonic shock. The value obtained, 0.79 × 10−3 N cm−1, compares favorably with the corresponding value, 0.87 × 10−3 N cm−1, estimated from measurements at osmotic equilibrium. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

10.
Hyperthermia induces transient changes in [Na+] i and [K+] i in mammalian cells. Since Cl flux is coupled with Na+ and K+ in several processes, including cell volume control, we have measured the effects of heat on [Cl] i using the chloride indicator, MQAE, with flow cytometry. The mean basal level of [Cl] i in Chinese hamster ovary cells was 12 mm. Cells heated at 42.0° or 45.0°C for 30 min had about a 2.5-fold increase in [Cl] i above unheated control values when measured immediately after heating. There was about a 3-fold decrease in [Na+] i under the same conditions, as measured by Sodium Green. The magnitude of the increase in [Cl] i depended upon time and temperature. The [Cl] i recovered in a time-dependent fashion to control values by 30 min after heating. When cells were heated at 45.0°C for 30 min in the presence of 1.5 mm furosemide, the heat-induced [Cl] i increase was completely blocked. Since furosemide inhibits the Na+/K+/2Cl cotransporter, Cl channels, and even ClHCO3 exchange, these ion transporters may be involved in the heat-induced increase in [Cl] i . Received: 15 June 1995/Revised: 9 April 1996  相似文献   

11.
Forskolin-induced anion currents and depolarization were investigated to clarify the mechanism of HCO3 secretion in the intralobular duct cells of rat parotid glands. Anion currents of the cells were measured at the equilibrium potential of K+, using a gramicidin-perforated patch technique that negligibly affects intracellular anion concentration. The forskolin-induced anion current was sustained and significantly (54%) suppressed by glibenclamide (200 μm), a blocker of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel. The anion current was markedly suppressed by addition of 1 mm methazolamide, a carbonic anhydrase inhibitor, and removal of external HCO3 . Forskolin depolarized the cells in the current-clamp mode. Addition of methazolamide and removal of external HCO3 significantly decreased the depolarizing level. These results suggest that activation of anion channels (mainly the CFTR Cl channel located in luminal membranes) and production of cytosolic HCO3 induce the inward anion current and resulting depolarization. Inhibition of the Na+-K+-2Cl cotransporter and the Cl-HCO3 exchanger had no significant effect on the current or depolarization, indicating that the uptake of Cl via the Na+-K+-2Cl cotransporter or the Cl-HCO3 exchanger is not involved in the responses. Taken together, we conclude that forskolin activates the outward movement (probably secretion) of HCO3 produced intracellularly, but not of Cl due to lack of active Cl transport in parotid duct cells, and that the gramicidin-perforated patch method is very useful to analyze anion transport. Received: 17 June 2000/Revised: 14 November 2000  相似文献   

12.
The presence of an electrogenic H+-ATPase has been described in the late distal tubule, a segment which contains intercalated cells. The present paper studies the electrogenicity of this transport mechanism, which has been demonstrated in turtle bladder and in cortical collecting duct. Transepithelial PD (V t ) was measured by means of Ling-Gerard microelectrodes in late distal tubule of rat renal cortex during in vivo microperfusion. The tubules were perfused with electrolyte solutions to which 2 × 10−7 m bafilomycin or 4.6 × 10−8 m concanamycin were added. No significant increase in lumen-negative V t upon perfusion with these inhibitors as compared to control, was observed as well as when 10−3 m amiloride, 10−5 m benzamil or 3 mm Ba2+ were perfused alone or in combination. The effect of an inhibition of electrogenic H+ secretion, i.e., increase in lumen-negative V t by 2–4 mV, was observed only when Cl channels were blocked by 10−5 m 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). This blocker also reduced the rate of bicarbonate reabsorption in this segment from 1.21 ± 0.14 (n= 8) to 0.62 ± 0.03 (8) nmol.cm−2.sec−1 as determined by stationary microperfusion and pH measurement by ion-exchange resin microelectrodes. These results indicate that: (i) the participation of the vacuolar H+ ATPase in the establishment of cortical late distal tubule V t is minor in physiological conditions, but can be demonstrated after blocking Cl channels, thus suggesting a shunting effect of this anion; and, (ii) the rate of H+ secretion in this segment is reduced by a Cl channel blocker, supporting coupling of H+-ATPase with Cl transport. Received: 6 July 1996/Revised: 27 December 1996  相似文献   

13.
In the present work the coupling under short-circuited conditions between the net Na+-influx across isolated frog skin and the transepithelial transport of water was examined i.e., the short-circuit current (I sc ) and the transepithelial water movement (TEWM) were measured simultaneously. It has been shown repeatedly that the I sc across isolated frog skin is equal to the net transepithelial Na+ transport. Furthermore the coupling between transepithelial uptake of NaCl under open-circuit conditions and TEWM was also measured. The addition of antidiuretic hormone (AVT) to skins incubated under short-circuited conditions resulted in an increase in the I sc and TEWM. Under control conditions I sc was 9.14 ± 2.43 and in the presence of AVT 45.9 ± 7.3 neq cm−2 min−1 (n= 9) and TEWM changed from 12.45 ± 4.46 to 132.8 ± 15.8 nL cm−2 min−1. The addition of the Na+ channel blocking agent amiloride resulted in a reduction both in I sc and TEWM, and a linear correlation between I sc and TEWM was found. The correlation corresponds to that 160 ± 15 (n= 7) molecules of water follow each Na+ across the skin. In another series of experiments it was found that there was a linear correlation between I sc and the increase in apical osmolarity needed to stop the TEWM. The data presented indicate that the observed coupling between the net transepithelial Na+ transport and TEWM is caused by local osmosis. Received: 16 October 1996/Revised: 6 March 1997  相似文献   

14.
The melibiose carrier from Escherichia coli is a sugar-cation cotransport system. Previously evidence was obtained that this integral membrane protein consists of 12 transmembrane helices. Starting with the cysteine-less melibiose carrier, cysteine has been substituted individually for amino acids 374–396, which includes all of the residues in the proposed helix XI. The carriers with cysteine substitutions were studied for their transport activity and the effect of the water soluble sulfhydryl reagent p-chloromercuribenzenesulfonic acid (PCMBS). Studies were carried out on both intact cells and inside out vesicles. Cysteine substitution caused loss of transport activity in seven of the mutants (K377C, G379C, A383C, F385C, L391C, G395C and Y396C). PCMBS produced more than 50% inhibition in six of the mutants (S380C, A381C, A384C, F387C, A388C and L391C). Preincubation of the cells with melibiose protected five of these residues from the inhibitory action of PCMBS. It was concluded that the residues whose cysteine derivatives were inhibited by PCMBS probably faced the aqueous channel. Received: 30 September 1999/Revised: 22 November 1999  相似文献   

15.
Using the whole-cell patch-clamp technique, we examined Cl-selective currents manifested by strial marginal cells isolated from the inner ear of gerbils. A large Cl-selective conductance of ∼18 nS/pF was found from nonswollen cells in isotonic buffer containing 150 mm Cl. Under a quasi-symmetrical Cl condition, the `instantaneous' current-voltage relation was close to linear, while the current-voltage relation obtained at the end of command pulses of duration 400 msec showed weak outward rectification. The permeability sequence for anionic currents was as SCN > Br≅ Cl > F > NO 3≅ I > gluconate, corresponding to Eisenmann's sequence V. When whole-cell voltage clamped in isotonic bathing solutions, the cells exhibited volume changes that were accounted for by the Cl currents driven by the imposed electrochemical potential gradients. The volume change was elicited by lowered extracellular Cl concentration, anion substitution and altered holding potentials. The Cl conductance varied in parallel with cell volume when challenged by bath anisotonicity. The whole-cell Cl current was only partially blocked by both 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB, 0.5 mm) and diphenylamine-2-carboxylic acid (DPC, 1.0 mm), but 4-acetamido-4′-isothiocyanato-stilbene-2,2′-disulfonic acid (SITS, 0.5 mm) was without effect. The properties of the present whole-cell Cl current resembled those of the single Cl channel previously found in the basolateral membrane of the marginal cell (Takeuchi et al., Hearing Res. 83:89–100, 1995), suggesting that the volume-correlated Cl conductance could be ascribed predominantly to the basolateral membrane. This Cl conductance may function not only in cell volume regulation but also for the transport of Cl and the setting of membrane potential in marginal cells under physiological conditions. Received: 15 August 1995/Revised: 3 November 1995  相似文献   

16.
The regulation of the voltage-activated chloride current conductance (G Cl ) in toad skin was investigated by the use of the SH reagents N-ethylmaleimide (NEM) and p-chloro-mercuricbenzenesulfonic acid PCMBS. This anion pathway is controlled by a voltage-sensitive gating regulator. Mucosal application of NEM decreased the voltage-activation in a time and concentration dependent manner, half-maximal inhibition being exerted at a concentration of 30 μm within 20 min. At concentrations higher than 100 μm, the voltage-activated G Cl was near-completely and irreversibly inhibited in less than 10 min. Resting, deactivated conductance was essentially unaffected. NEM had no effect on active sodium transport (measured as I sc ) under conditions, which fully dissipated the voltage-activated G Cl . After complete inhibition of the voltage-activated G Cl with NEM, chloride conductance could still be stimulated by CPT-cAMP as in control tissues. Under these conditions, NEM at concentrations above 1 mm decreased G Cl reversibly. Mucosal application of PCMBS at 500 μm inhibited the activated conductance by 35%, which was slightly reversible. Inhibition of voltage-activated G Cl , which was observed after mucosal addition of the membrane-impermeable NEM analogue, eosin-5-maleimide, was completely reversible after washout. This suggests that the binding site for the maleimide is not accessible from the external face of the apical membrane. Brief application of NEM at lower concentrations (1–3 min, ≤100 μm) led to partial inhibition of G Cl , followed by occasionally complete recovery upon washout of NEM. Recovery of voltage-activated G Cl was progressively attenuated and eventually disappeared after subsequent brief applications of NEM. This could reflect recruitment of permeation/control sites from a finite pool. The data are discussed in the frame of a working model for the voltage-activated Cl-pathway, that contains two principle components, i.e., an anion-selective permeation path which is controlled by regulatory protein(s). Received: 18 December 1996/Revised: 28 April 1997  相似文献   

17.
The melibiose carrier of Escherichia coli is a cytoplasmic membrane protein that mediates the cotransport of galactosides with H+, Na+, or Li+. In this study we used cysteine-scanning mutagenesis to try to gain information about the position of transmembrane helix VI in the three-dimensional structure of the melibiose carrier. We constructed 23 individual cysteine substitutions in helix VI and an adjacent loop of the carrier. The resulting melibiose carriers retained 22–100% of their ability to transport melibiose. We tested the effect of the hydrophilic sulfhydryl reagent p-chloromercuri-benzenesulfonic acid (PCMBS) on the cysteine-substitution mutants and we found that there was no inhibition of melibiose transport in any of the mutants. We suggest that helix VI is imbedded in phospholipid and does not face the aqueous channel through which melibiose passes. Received: 6 March 2001/Revised: 14 May 2001  相似文献   

18.
Melanoma cells are transformed melanocytes of neural crest origin. K+ channel blockers have been reported to inhibit melanoma cell proliferation. We used whole-cell recording to characterize ion channels in four different human melanoma cell lines (C8161, C832C, C8146, and SK28). Protocols were used to identify voltage-gated (KV), Ca2+-activated (KCa), and inwardly rectifying (KIR) K+ channels; swelling-sensitive Cl channels (Clswell); voltage-gated Ca2+ channels (CaV) and Ca2+ channels activated by depletion of intracellular Ca2+ stores (CRAC); and voltage-gated Na+ channels (NaV). The presence of Ca2+ channels activated by intracellular store depletion was further tested using thapsigargin to elicit a rise in [Ca2+] i . The expression of K+ channels varied widely between different cell lines and was also influenced by culture conditions. KIR channels were found in all cell lines, but with varying abundance. Whole-cell conductance levels for KIR differed between C8161 (100 pS/pF) and SK28 (360 pS/pF). KCa channels in C8161 cells were blocked by 10 nm apamin, but were unaffected by charybdotoxin (CTX). KCa channels in C8146 and SK28 cells were sensitive to CTX (K d = 4 nm), but were unaffected by apamin. KV channels, found only in C8146 cells, activated at ∼−20 mV and showed use dependence. All melanoma lines tested expressed CRAC channels and a novel Clswell channel. Clswell current developed at 30 pS/sec when the cells were bathed in 80% Ringer solution, and was strongly outwardly rectifying (4:1 in symmetrical Cl). We conclude that different melanoma cell lines express a diversity of ion channel types. Received: 2 April 1996/Revised: 22 August 1996  相似文献   

19.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

20.
Membrane-active toxins from snake venom have been used previously to study protein-lipid interactions and to probe the physical and biochemical states of biomembranes. To extend these studies, we have isolated from Naja naja kaowthia (cobra) venom a cytotoxin free of detectable phospholipase A2 (PLA2). The amino acid composition, pI (10.2), and net charge of the cytotoxin compares well with membrane-active toxins isolated from venoms of other cobras. The cytotoxin, shown by a spin label method, associates with PLA2 in buffers at pH values between 7.0 and 5.0, but not at pH 4.0. It is suggested that cytotoxin and PLA2 (pI close to 4.8) associate electrostatically in the native venom. The effect of the cytotoxin on model phospholipid membranes was studied by EPR of spin probes in oriented lipid multilayers and 1H-NMR of sonicated liposomes. The cytotoxin did not significantly affect the packing of lipids in pure phosphatidylcholine (PC) membranes and in PC membranes containing 10 mol% phosphatidic acid (PA) or cardiolipin (CL). However, the cytotoxin induced an increase in membrane permeability and formation of nonbilayer structures in PC membranes containing 40 mol% of PA or CL. The purified cytotoxin was cytocidal to Jurkat cells, but had little effect on normal human lymphocytes. However, both Jurkat cells and normal lymphocytes were killed equivalently when treated with 10−9 m PLA2 and 10−5 m cytotoxin in combination. From its effect on model membranes and Jurkat cells, it is suggested that purified cytotoxin preferentially targets and disrupts membranes that are rich in acidic phospholipids on the extracellular side of the plasma membrane. Received: 20 March 1996/Revised: 25 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号