首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation-inducing factor 1 (DIF-1) is a dichlorinated alkyl phenone (1-[(3,5-dichloro-2,6-dihydroxy-4-methoxy)phenyl]hexan-1-one) from Dictyostelium discoideum, that induces amoebae to differentiate into stalk cells. It was shown previously that DIF-1 is rapidly metabolized into a series of more polar compounds by living cells [Traynor, D. & Kay, R.R. (1991) J. Biol. Chem. 266, 5291-5297]. The first step in DIF-1 metabolism is the formation of DIF metabolite 1 (now known to be DIF-3) by a monodechlorination. We report here the discovery of the enzyme activity catalyzing this dechlorination. A very sensitive enzyme assay was developed, using [3H]DIF-1 and a TLC system to separate DIF-1 from the product, DIF-3. DIF-1 3(5)-dechlorinase is present in the high-speed supernatant of cell lysates, and uses glutathione, at physiological concentrations, as cofactor. Kinetic measurements indicate a Km for DIF-1 of about 70 nM. The enzyme activity is inhibited by DIF-2 (the pentan-1-one analogue of DIF-1), with a median inhibitor concentration (IC50) of 1 microM, and DIF-3 (IC50 = 5 microM), which presumably act as substrates, but other compounds structurally related to DIF-1 were much less effective. Aurothioglucose, an inhibitor of selenocysteine enzymes, inhibited DIF-1 3(5)-dechlorinase with IC50 = 100 nM. DIF-1 3(5)-dechlorinase activity is developmentally regulated. It is essentially absent from growing cells and increases at the end of aggregation to reach a first peak of activity at the first finger stage, with a further rise at culmination.  相似文献   

2.
Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2) are small lipophilic signal molecules that control both cell differentiation and chemotaxis in the cellular slime mold Dictyostelium discoideum. In this study, we examined the effects of four amide derivatives of DIF-1 on stalk cell differentiation and chemotaxis. The DIF derivatives differentially affected cell differentiation and chemotaxis, suggesting the possible existence of at least three receptors for DIFs: one receptor responsible for stalk cell induction, and two receptors responsible for chemotaxis modulation. Furthermore, our results indicate that DIF derivatives can be utilized to analyze the DIF-signaling pathways.  相似文献   

3.
New roles for DIF? Effects on early development in Dictyostelium   总被引:1,自引:0,他引:1  
The DIFs are unusual, chlorinated molecules which induce stalk cell differentiation during the later, multicellular phase of Dictyostelium development. Here we provide evidence that one or more DIFs have a role during early development, when small amounts are known to be made. Initial indications came from an optical technique which detects changes in shape or cohesion of cells in suspension (Gerisch and Hess, PNAS 71, 2118, 1974). After a period of optical inactivity at the start of development, cell suspensions normally produce spontaneous spike-shaped light-scattering oscillations synchronised by oscillations in extracellular cAMP levels, followed by sinusoidal oscillations where the synchroniser is not known. DIFs 1 and 2 produce optical responses from cells at all these early stages of development. The phase of both spiked and sinusoidal oscillations can be shifted, indicating an effect on the oscillator in each case. We find further: (1) cAMP oscillations and cAMP relay during spiked oscillations are transiently inhibited by DIF-1. (2) DIF-1 causes a transient decrease in cellular cGMP levels in cells taken before oscillations commence and likewise inhibits the cGMP response to a cAMP stimulus in cells taken later in development. Cytoskeletal organization and hence cell shape might be affected by DIF-1 by this indirect route. (3) The effects of DIF-1 are transient, even though it is essentially stable in the cell suspension. Cells somehow adapt to DIF-1. (4) The effects are chemically specific: DIF-1 and DIF-2 are active at 10(-7) to 10(-8) M, with DIF-2 being the more active, whereas related compounds have little or no activity at 10(-6) M. These results indicate that cells are responsive to DIFs 1 and 2 from the start of development and suggest a wider role for the DIFs. This role might involve effects on cAMP signalling and on intracellular second messengers.  相似文献   

4.
The DIFs are a family of secreted chlorinated molecules that control cell fate during development of Dictyostelium cells in culture and probably during normal development too. They induce stalk cell differentiation and suppress spore cell formation. The biosynthetic and inactivation pathways of DIF-1 (the major bioactivity) have been worked out. DIF-1 is probably synthesised in prespore cells and inactivated in prestalk cells, by dechlorination. Thus, each cell type tends to alter DIF-1 level so as to favour differentiation of the other cell type. This relationship leads to a model for cell-type proportioning during normal development.  相似文献   

5.
The major inducers of cell differentiation in Dictyostelium appear to be cyclic AMP and DIF-1. Recently we have chemically identified DIF-1, together with the closely related DIF-2 and -3. They represent a new chemical class of potent effector molecules, based on a phenyl alkanone with chloro, hydroxy, and methoxy substitution of the benzene ring. Previous work has shown that DIF-1 can induce prestalk-specific gene expression within 15 min, whereas it suppresses prespore differentiation. Hence, DIF-1 can control the choice of pathway of cell differentiation in Dictyostelium and is therefore likely to be involved in establishing the prestalk/prespore pattern in the aggregate. In support of this, we show that DIF treatment of slugs results in an enlarged prestalk zone. Cyclic AMP seems less likely to have such a pathway-specific role, but later in development it becomes inhibitory to stalk cell differentiation. This inhibition may be important in suppressing terminal stalk cell differentiation until culmination. Spore differentiation can be induced efficiently by high levels of Br-cyclic AMP, a permeant analogue of cyclic AMP. In this, it phenocopies certain spore-maturation mutants, and we propose that during normal development spore differentiation is triggered by an elevation in intracellular cyclic AMP levels. How this elevation in cyclic AMP levels is brought about is not known. The experiments with Br-cyclic AMP also provide the first direct evidence that elevated levels of intracellular cyclic AMP induce differentiation in Dictyostelium.  相似文献   

6.
Developing Dictyostelium discoideum amoebae form a stalked fruiting body in which individual cells differentiate into either stalk cells or spores. The major known inducer of stalk cell differentiation is the chlorinated polyketide DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one); however a mutant blocked in the terminal step of DIF-1 biosynthesis still produces one of the prestalk cell subtypes - the pstA cells - as well as some mature stalk cells. We therefore searched for additional stalk cell-inducing factors in the medium supporting development of this mutant. These factors were purified by solvent extraction and HPLC and identified by mass spectroscopy and NMR. The mutant lacked detectable DIF-2 and DIF-3 (the pentanone and deschloro homologues of DIF-1) but four major stalk cell-inducing activities were detected, of which three were identified. Two compounds were predicted intermediates in DIF-1 biosynthesis: the desmethyl, and desmethyl-monochloro analogues of DIF-1 (dM-DIF-1 and Cl-THPH, respectively), supporting the previously proposed pathway of DIF-1 biosynthesis. The third compound was a novel factor and was identified as 4-methyl-5-pentylbenzene-1,3-diol (MPBD) with the structure confirmed by chemical synthesis. To investigate the potential roles of these compounds as signal molecules, their effects on morphological stalk and spore differentiation were examined in cell culture. All three induced morphological stalk cell differentiation. We found that synthetic MPBD also stimulated spore cell differentiation. Now that these factors are known to be produced and released during development, their biological roles can be pursued further.  相似文献   

7.
8.
The differentiation-inducing factor-1 (DIF-1) is a putative morphogen that induces stalk-cell formation in the lower eukaryote Dictyostelium discoideum. This molecule has been shown to inhibit cell growth and induce erythroid differentiation in human leukemia K562 cells. In the present study, to clarify the mechanism of the actions of DIF-1, we examined the effect of DIF-1 on Akt/protein kinase B (PKB) in K562 cells. Akt/PKB is a serine/threonine kinase that plays a pivotal role in the regulation of cell survival and differentiation in a variety of cells. A nonphosphorylated (inactive) form of Akt/PKB was ordinarily expressed in K562 cells. However, Akt/PKB was phosphorylated and potently activated within several hours of incubation with 5-30 microM DIF-1, and this activation was inhibited by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase). Calcium-increasing agents thapsigargin and A23187 also activated Akt/PKB slightly, which was inhibited by wortmannin. By contrast, calcium-reducing agents TMB-8 and EGTA together with A23187 inhibited the DIF-1-induced activation of Akt/PKB. PMA (PKC activator) also activated Akt/PKB but this activation was not inhibited by wortmannin. DIF-1 exhibited no marked effect on the activation of PKCalpha, beta, and gamma, which were activated by PMA. These results indicate that DIF-1 activates Akt/PKB possibly via cytosolic calcium and subsequent activation of PI3-kinase and also that PMA activates Akt/PKB in a PI3-kinase-independent manner.  相似文献   

9.
We found novel development rescuing factors (DRFs) secreted from developing Dictyostelium cells, by using a mutant (erkB-) which is missing MAP-kinase ERK2 as a test strain for bioassay. The mutant erkB- fails to undergo multicellular morphogenesis due to impaired cAMP signaling. However, such developmental defect can be restored by the presence of low-molecular weight DRFs that are secreted from developing wild-type cells. We previously showed that DIF-1 (Differentiation-Inducing Factor 1 for stalk cells) possesses this activity, indicating a newly discovered role of DIF-1. Surprisingly, however, the mutant dmtA-, which is incapable of DIF-1 synthesis still exerts a strong inducing activity of the multicellular morphogenesis of erkB-. After analysis of HPLC fractions of conditioned media prepared from both wild type Ax2 and dmtA- strains revealed that both strains secrete at least two novel DRF activities with DIF-like mobility. However, these activities were not derived from other DIFs such as DIF-2 and DIF-3. Identification of these DRFs found in this study would provide insight into the mechanism by which the development of the erkB- mutant is restored and how these factors act in the normal development of Dictyostelium.  相似文献   

10.
R Insall  O Nayler    R R Kay 《The EMBO journal》1992,11(8):2849-2854
DIF-1 is a novel chlorinated alkyl phenone which induces differentiation of prestalk cells in Dictyostelium discoideum. It is broken down and inactivated by a cytoplasmic enzyme, DIF-1 3(5)-dechlorinase (hereafter referred to as DIF-1 dechlorinase), which is found only in prestalk cells. We show that DIF-1 dechlorinase levels are induced at least 50-fold when cells are treated with DIF-1. This response is rapid--enzyme activity doubles within 15 min and is fully induced within an hour--and occurs early in development, before other prestalk markers can be induced by DIF-1. Maximum inducibility is seen towards the end of aggregation, when DIF-1 dechlorinase is barely detectable in uninduced cells. The dose-dependence reveals a threshold concentration of DIF-1 (15 nM) below which almost no response is seen. Cyclic AMP, which is the chemoattractant during aggregation and plays a key role in later development, suppresses the induction of DIF-1 dechlorinase by DIF-1. We conclude that induction of DIF-1 dechlorinase is one of the first steps on the developmental pathway which leads to prestalk cell differentiation, and suggest that the resulting negative feedback on DIF-1 levels is an important part of the mechanism by which cells decide whether to become prestalk or prespore cells.  相似文献   

11.
Differentiation-inducing factors (DIFs) are putative morphogens that induce cell differentiation in Dictyostelium discoideum. We previously reported that DIF-3 activates glycogen synthase kinase-3beta (GSK-3beta), resulting in the degradation of cyclin D1 in HeLa cells. In this study, we investigated the effect of DIF-3 on cyclin D1 mutants (R29Q, L32A, T286A, T288A, and T286A/T288A) to clarify the precise mechanisms by which DIF-3 degrades cyclin D1 in HeLa cells. We revealed that T286A, T288A, and T286A/T288A mutants were resistant to DIF-3-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr(286) and Thr(288) were critical for cyclin D1 degradation induced by DIF-3. Indeed, DIF-3 markedly elevated the phosphorylation level of cyclin D1, and mutations introduced to Thr(286) and/or Thr(288) prevented the phosphorylation induced by DIF-3. Depletion of endogenous GSK-3beta and dual-specificity tyrosine phosphorylation regulated kinase 1B (DYRK1B) by RNA interference attenuated the DIF-3-induced cyclin D1 phosphorylation and degradation. The effect of DIF-3 on DYRK1B activity was examined and we found that DIF-3 also activated this kinase. Further, we found that not only GSK-3beta but also DYRK1B modulates cyclin D1 subcellular localization by the phosphorylation of Thr(288). These results suggest that DIF-3 induces degradation of cyclin D1 through the GSK-3beta- and DYRK1B-mediated threonine phosphorylation in HeLa cells.  相似文献   

12.
Differentiation-inducing factors (DIFs) are required for stalk cell formation in Dictyostelium discoideum . In the present study, in order to support our hypothesis that DIFs may function via increases in [Ca2+]c and [H+]c, we investigated the combined effects of 5,5-dimethyl-2,4-oxazolidinedione (DMO, a [H+]c-increasing agent), thapsigargin (Tg) and BHQ ([Ca2+]c-increasing agents) on in vitro stalk cell formation in several strains. DMO, in combination with Tg or BHQ, induced stalk cell formation in a DIF-deficient mutant HM44. Although the rates of stalk cell induction by the drugs were low in the presence of cerulenin (an inhibitor of endogenous DIF production) in HM44 and V12M2 (a wild-type strain), the drugs succeeded in inducing sufficient stalk cell formation when a small amount of DIF-1 was supplied. Furthermore, co-addition of DMO, BHQ and a small amount of DIF-1 also induced sufficient stalk cell formation in AX-4 (an axenic strain) and HM1030 ( dmtA ) but not in CT15 ( dimA ). The drugs suppressed spore formation and promoted stalk cell formation in both HM18 (a sporogenous mutant) and 8-bromo-cAMP-stimulated V12M2. The present results suggest that DIFs function, at least in part, via increases in [Ca2+]c and [H+]c in D. discoideum .  相似文献   

13.
The differentiation-inducing signals (DIFs) currently known in Dictyostelium appear unable to account for the full diversity of cell types produced in development. To search for new signals, we analyzed the differentiation in monolayers of cells expressing prestalk (ecmAO, ecmA, ecmO, ecmB and cAR2) and prespore (psA) markers. Expression of each marker drops off as the cell density is reduced, suggesting that cell interaction is required. Expression of each marker is inhibited by cerulenin, an inhibitor of polyketide synthesis, and can be restored by conditioned medium. However, the known stalk-inducing polyketide, DIF-1, could not replace conditioned medium and induce the ecmA or cAR2 prestalk markers, suggesting that they require different polyketide inducers. Polyketide production by fungi is stimulated by cadmium ions, which also dramatically stimulates differentiation in Dictyostelium cell cultures and the accumulation of medium factors. Factors produced with cadmium present were extracted from conditioned medium and fractionated by HPLC. A new factor inducing prespore cell differentiation, called PSI-2, and two inducing stalk cell differentiation (DIFs 6 and 7) were resolved. All are distinct from currently identified factors. DIF-6, but not DIF-7 or PSI-2, appears to have an essential carbonyl group. Thus Dictyostelium may use extensive polyketide signaling in its development.  相似文献   

14.
To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of beta-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3beta (GSK-3beta) and inhibition of GSK-3beta attenuated the DIF-1-induced beta-catenin degradation, indicating the involvement of GSK-3beta in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/beta-catenin signaling, resulting in the suppression of cyclin D1 promoter activity.  相似文献   

15.
Cyclic AMP and DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone) together induce stalk cell differentiation in vitro in Dictyostelium discoideum strain V12M2. The induction can proceed in two stages: in the first, cyclic AMP brings cells to a DIF-responsive state; in the second, DIF-1 alone can induce stalk cell formation. We report here that during the DIF-1-dependent stage, cyclic AMP is a potent inhibitor of stalk cell differentiation. Addition of cyclic AMP at this stage to V12M2 cells appreciably delays, but does not prevent, stalk cell formation. In contrast, stalk cell differentiation in the more common strain NC4 is completely suppressed by the continued presence of cyclic AMP. This fact explains earlier failures to induce stalk cells in vitro in NC4. We now consistently obtain efficient stalk cell induction in NC4 by removing cyclic AMP in the DIF-1-dependent stage. Cyclic AMP also inhibits the production of a stalk-specific protein (ST310) in both NC4 and a V12M2 derivative. Adenosine, a known antagonist of cyclic AMP action, does not relieve this inhibition by cyclic AMP and does not itself promote stalk cell formation. Finally, stalk cell differentiation of NC4 cells at low density appears to require factors in addition to cyclic AMP and DIF-1, but their nature is not yet known. The inhibition of stalk cell differentiation by cyclic AMP may be important in establishing the prestalk/prespore pattern during normal development, and in preventing the maturation of prestalk into stalk cells until culmination.  相似文献   

16.
Developing Dictyostelium discoideum amoebae form a stalked fruiting body in which individual cells differentiate into either stalk cells or spores. The major known inducer of stalk cell differentiation is the chlorinated polyketide DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one); however a mutant blocked in the terminal step of DIF-1 biosynthesis still produces one of the prestalk cell subtypes – the pstA cells – as well as some mature stalk cells. We therefore searched for additional stalk cell-inducing factors in the medium supporting development of this mutant. These factors were purified by solvent extraction and HPLC and identified by mass spectroscopy and NMR. The mutant lacked detectable DIF-2 and DIF-3 (the pentanone and deschloro homologues of DIF-1) but four major stalk cell-inducing activities were detected, of which three were identified. Two compounds were predicted intermediates in DIF-1 biosynthesis: the desmethyl, and desmethyl-monochloro analogues of DIF-1 (dM-DIF-1 and Cl-THPH, respectively), supporting the previously proposed pathway of DIF-1 biosynthesis. The third compound was a novel factor and was identified as 4-methyl-5-pentylbenzene-1,3-diol (MPBD) with the structure confirmed by chemical synthesis. To investigate the potential roles of these compounds as signal molecules, their effects on morphological stalk and spore differentiation were examined in cell culture. All three induced morphological stalk cell differentiation. We found that synthetic MPBD also stimulated spore cell differentiation. Now that these factors are known to be produced and released during development, their biological roles can be pursued further.  相似文献   

17.
18.
The differentiation inducing factor (DIF) is essential for stalk cell formation in monolayers of Dictyostelium discoideum and is necessary for the expression of several prestalk cell-specific genes. DIF activity has been fractionated into a major species, designated DIF-1, and several minor species, including DIF-2. Although DIF-1 is an excellent inducer of stalk cell formation from vegetative cells, it is a poor inducer of stalk cell formation from prestalk cells. In contrast, DIF-2 is more active for the conversion of prestalk cells into stalk cells, than for the conversion of vegetative cells to stalk cells. The same results were obtained regardless of whether chemically synthesized or naturally occurring components were utilized. In addition, stalk cell formation was three- to fourfold higher when vegetative cells were incubated with DIF-1 for a suboptimal period and then subsequently incubated with DIF-2, than when cells were incubated with DIF-2 first and then subsequently with DIF-1. These results indicate a distinct role for DIF-2 during stalk cell formation and suggest the possibility that DIF-1 and DIF-2 act sequentially.  相似文献   

19.
In search of chemical substances applicable for the treatment of cancer and other proliferative disorders, we studied the signal transduction of Dictyostelium differentiation-inducing factors (DIFs) in mammalian cells mainly using HeLa cells. Although DIF-1 and DIF-3 both strongly inhibited cell proliferation by inducing G(0)/G(1) arrest, DIF-3 was more effective than DIF-1. DIF-3 suppressed cyclin D1 expression at both mRNA and protein levels, whereas the overexpression of cyclin D1 overrode DIF-3-induced cell cycle arrest. The DIF-3-induced decrease in the amount of cyclin D1 protein preceded the reduction in the level of cyclin D1 mRNA. The decrease in cyclin D1 protein seemed to be caused by accelerated proteolysis, since it was abrogated by N-acetyl-Leu-Leu-norleucinal, a proteasome inhibitor. DIF-3-induced degradation of cyclin D1 was also prevented by treatment with lithium chloride, an inhibitor of glycogen synthase kinase-3beta (GSK-3beta), suggesting that DIF-3 induced cyclin D1 proteolysis through the activation of GSK-3beta. Indeed, DIF-3 dephosphorylated Ser(9) and phosphorylated tyrosine on GSK-3beta, and it stimulated GSK-3beta activity in an in vitro kinase assay. Moreover, DIF-3 was revealed to induce the nuclear translocation of GSK-3beta by immunofluorescent microscopy and immunoblotting of subcellular protein fractions. These results suggested that DIF-3 activates GSK-3beta to accelerate the proteolysis of cyclin D1 and that this mechanism is involved in the DIF-3-induced G(0)/G(1) arrest in mammalian cells.  相似文献   

20.
The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号