首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten minutes after KCl-depolarization of rat myometrial strips, at which time the muscles were in a state of sustained contracture, tissue levels of adenosine 3',5'-cyclic monophosphate (cyclic AMP) were increased by approximately 40% over relaxed controls, and levels of guanosine 3',5'-cyclic monophosphate (cyclic GMP) were decreased by 40%. At this point both nitroglycerin (4 X 10(-4) M) and papaverine (2 X 10(-5) M) were capable of relaxing the depolarized muscles without significantly increasing cyclic AMP levels. Isoproterenol, in concentrations from 5 X 10(-9) M to 10(-6) M, relaxed the depolarized muscles and significantly increased tissue levels of cyclic AMP. However, the magnitudes of the cyclic AMP increases seen after the lower concentrations of isoproterenol were small relative to the increases observed during KCl-contracture alone. For example, the 40% elevation of cyclic AMP seen 10 min after KCl-depolarization did not cause the muscles to relax, whereas 5 X 10(-9) M isoproterenol caused relaxation with an increase in cyclic AMP levels of only 16% over depolarized controls. It was concluded that changes in total tissue levels of cyclic AMP were not responsible for the uterine relaxation caused by nitroglycerin, papaverine or isoproterenol in these experiments. Cyclic GMP levels in the depolarized muscles were not significantly changed by isoproterenol or papaverine but were increased approximately 80% by nitroglycerin. The above results are not consistent with the previously suggested roles for cyclic GMP and cyclic AMP as mediators of smooth muscle contraction and relaxation, respectively.  相似文献   

2.
The role of cyclic AMP in the control of vascular smooth muscle tone was studied by monitoring the effects of prostaglandin E1 (PGE1), isoproterenol and forskolin on cyclic AMP levels and tension in rabbit aortic rings. PGE1, isoproterenol and forskolin all increased cyclic AMP levels in rabbit aortic rings. Isoproterenol and forskolin relaxed phenylephrine-contracted aortic rings, but PGE1 contracted the rings in the presence or absence of phenylephrine. Isoproterenol relaxed these PGE1-contracted aortic rings without further change in total cyclic AMP levels, which were already elevated by the PGE1 alone. Pretreatment with forskolin potentiated the effects of PGE1 on cyclic AMP levels. PGE1 caused contractions in muscles partially relaxed by forskolin, even though very large increases in cyclic AMP levels (30 fold) were produced by PGE1 in the presence of forskolin. Isoproterenol was able to relax these forskolin-treated, PGE1-contracted muscles with no further increase in cyclic AMP levels. Thus, there does not appear to be a good correlation between total tissue levels of cyclic AMP and tension in these experiments. Our results suggest that, if cyclic AMP is responsible for relaxation of smooth muscle, some form of functional compartmentalization of cyclic AMP must exist in this tissue.  相似文献   

3.
Experiments were carried out to elucidate the characteristics of regulation of cyclic AMP levels in intact myocardial cells. For this purpose, the influence of isoproterenol, a nonselective cyclic nucleotide phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) and carbachol on cyclic AMP levels was investigated in isolated rat cardiac myocytes. The extent of cyclic AMP accumulation induced by isoproterenol was much less than that produced by IBMX: submaximal concentrations of isoproterenol and IBMX elevated the cyclic AMP level 2.4- and 4.8-fold of the control level, respectively. Both agents in combination increased the cyclic AMP level markedly 48-fold. Carbachol inhibited the cyclic AMP accumulation induced by isoproterenol, IBMX and their combination by 30%, 60% and 80% of the respective response. The extent of inhibition produced by carbachol of the cyclic AMP accumulation induced by IBMX + isoproterenol was smaller than that caused by propranolol, and carbachol produced only a marginal additional inhibitory action to that of propranolol, implying that carbachol does not affect the process of cyclic AMP degradation. The present findings indicate that in intact cardiac myocytes the rate of cyclic AMP degradation catalyzed by PDE may be a crucial process of cyclic AMP turnover. This view is supported by the observations that the inhibitory action of carbachol on the effect of isoproterenol was less than that on the effect of IBMX, and that the inhibitory action of carbachol was markedly enhanced by the simultaneous presence of IBMX.  相似文献   

4.
The effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP dependent protein kinase activity were compared in helical strips of bovine coronary artery. Elevation of cyclic AMP and activation of the protein kinase appeared to be well correlated with relaxation of potassium-contracted arteries by isoproterenol. Forskolin, at 1 microM or higher concentrations, also markedly elevated cyclic AMP levels, activated the kinase, and relaxed the arteries. However, a lower concentration of forskolin (0.1 microM) caused significant increases in both cyclic AMP levels and cyclic AMP dependent protein kinase activity, but did not relax the muscles. Relaxation caused by isoproterenol was accompanied by an apparent translocation of cyclic AMP dependent protein kinase activity from the soluble to the particulate fraction in these preparations. A similar shift in the distribution of the kinase was caused by various concentrations of forskolin, irrespective of whether the arteries were relaxed or not. In contrast to previous results in other tissues, low concentrations of forskolin (less than or equal to 1 microM), which themselves markedly elevated cyclic AMP levels in the arteries, did not potentiate the effects of isoproterenol on cyclic AMP levels or tension in these preparations. These results suggest that either cyclic AMP is not solely responsible for the relaxation caused by these agents, or some form of functional compartmentalization of cyclic AMP and cyclic AMP dependent protein kinase exists in this tissue.  相似文献   

5.
Myosin light chain phosphorylation in intact rat thoracic aorta was elevated during contraction induced by 0.3 microM norepinephrine, but was not maintained. Addition of 0.5 microM sodium nitroprusside to norepinephrine treated rat aorta strips led to elevation of cyclic GMP levels, relaxation of tension, and dephosphorylation of myosin light chain. Depletion of extracellular calcium or addition of calmodulin antagonists trifluoperazine and W7 diminished the contraction and phosphorylation of myosin light chain by norepinephrine, but did not prevent dephosphorylation by sodium nitroprusside or the elevated levels of cyclic GMP. Isoproterenol, 8-bromo cyclic GMP, and dibutyryl cyclic AMP all caused dephosphorylation of myosin light chain and induced relaxation during the period of development of tone. Eight other proteins had increased phosphorylation following norepinephrine treatment and one protein had less phosphorylation. The different proteins phosphorylated by norepinephrine showed varying degrees of sensitivity to Ca2+-free solution and to the calmodulin antagonists. The pattern of protein phosphorylation caused by sodium nitroprusside was best mimicked by 8-bromo cyclic GMP, rather than isoproterenol and dibutyryl cyclic AMP. These proteins were, generally, unaffected by Ca2+-free solution and the calmodulin antagonists. The present observations support the hypothesis that vasodilators inhibit tone development through myosin light chain dephosphorylation. Furthermore, the nitrovasodilators act through elevation of cyclic GMP and phosphorylation of proteins by cyclic GMP-dependent protein kinase.  相似文献   

6.
1. The involvement of intracellular 3':5'-cyclic AMP in the inhibition of platelet aggregation by prostaglandin E(1), isoprenaline and adenosine has been examined by a radiochemical technique. Platelet-rich plasma was incubated with radioactive adenine to incorporate (14)C radioactivity into platelet nucleotides. Pairs of identically treated samples were taken, one for the photometric measurement of platelet aggregation induced by ADP, the other for estimation of the radioactivity of 3':5'-cyclic AMP. 2. Theophylline, papaverine, dipyridamole and 2,6-bis-(diethanolamino)-4-piperidinopyrimido[5,4d]pyrimidine (compound RA233) were found to inhibit 3':5'-cyclic AMP phosphodiesterase from platelets. At concentrations of 3':5'-cyclic AMP greater than 50mum the most active inhibitor was dipyridamole; at 3':5'-cyclic AMP concentrations less than 19mum, papaverine and compound RA233 were more active than dipyridamole. 3. In the presence of compound RA233 (50mum), the effectiveness of prostaglandin E(1) as an inhibitor of platelet aggregation was increased tenfold. Compound RA233 also increased the stimulation by prostaglandin E(1) of the incorporation of radioactivity into 3':5'-cyclic AMP. 4. Compound RA233 (50mum) increased the effectiveness of both adenosine and 2-chloroadenosine as inhibitors of aggregation by 70-100-fold, and in the presence of compound RA233 both adenosine and 2-chloroadenosine stimulated the incorporation of radioactivity into 3':5'-cyclic AMP; the extent of the stimulation was proportional to the logarithm of the nucleoside concentration. 5. Compound RA233 (100-500mum) inhibited platelet aggregation by itself and caused small increases in the radioactivity of 3':5'-cyclic AMP. Partial positive correlations were found between the radioactivity of 3':5'-cyclic AMP in platelets measured at the time of addition of the aggregating agent (ADP) and the extent to which the aggregation was inhibited. 6. The results are interpreted as indicating that adenosine, 2-chloroadenosine, isoprenaline, prostaglandin E(1) and drugs that inhibit platelet 3':5'-cyclic AMP phosphodiesterase all inhibit aggregation by a common mechanism involving intracellular 3':5'-cyclic AMP.  相似文献   

7.
The effects of adrenergic and cholinergic agents, present singly or in combination, on the levels of cyclic AMP and cyclic GMP in slices of rat lung were studied. It was found that isoproterenol increased pulmonary cyclic AMP levels about 3-fold, and this increase was abolished by propranolol, but not by phenoxybenzamine. Acetylcholine increased the cyclic GMP levels also about 3-fold (thus raising its tissue content above that of cyclic AMP), and this increment was largely reduced by atropine, but not by hexamethonium. While without effects on the cyclic GMP levels when present alone, isoproterenol antagonized acetylcholine in increasing cyclic GMP levels. Acetylcholine, while lacking effects on the basal levels of cyclic AMP, on the other hand, depressed the augmented levels caused by isoproterenol.The data presented indicate that cyclic GMP may mediate the cholinergic action in lung and that the pulmonary cyclic GMP levels are also closely regulated by β-adrenergic receptor activation.  相似文献   

8.
The effects of short term stimulation of beta-adrenergic receptors and elevations in intracellular cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle cells in vitro has been studied using both the 45Ca2+ flux technique and [3H] nitrendipine-binding experiments. Isoproterenol increased the nitrendipine-sensitive 45Ca2+ influx under depolarizing conditions. The effects of isoproterenol were additive to those of depolarization and were antagonized by alprenolol. Half-maximal inhibition of 45Ca2+ influx induced both by depolarization and by isoproterenol occurred at a nitrendipine concentration of 1 nM. Treatments that resulted in an increased level of intracellular cyclic AMP, such as treatment with 1-methyl-3-isobutylxanthine, theophylline, dibutyryl cyclic AMP, or 8-bromocyclic AMP also resulted in an increased rate of 45Ca2+ entry via nitrendipine-sensitive Ca2+ channel. In contrast, long term treatment of myotubes in culture with isoproterenol and other compounds that increased intracellular cyclic AMP led to a large increase in the number of nitrendipine receptors. This increase was accompanied by a 4-10-fold decrease in the affinity of the receptors for nitrendipine. Alprenolol inhibited the long term effects of isoproterenol. In vivo treatment of 7-day-old chicks with reserpine and alprenolol produced a decrease in the number of skeletal muscle nitrendipine receptors. This decrease in receptor number was accompanied by an increase in the affinity of nitrendipine for its receptor by a factor of 4 to 5. These effects on the nitrendipine receptor were prevented by simultaneous injection of isoproterenol. The results are discussed in relation to the role of beta-adrenergic receptors and intracellular cyclic AMP in the regulation of skeletal muscle Ca2+ channels.  相似文献   

9.
Cyclic 3',5' adenosine monophosphate (cyclic AMP) levels were measured in isolated hepatocytes under several conditions. Following the addition of glucagon cyclic AMP levels increased rapidly with peak values occurring at three minutes. The increase in cyclic AMP was dose dependent. Significant increases were found with 10(-10)M glucagon and a maximum increase of twenty fold was produced by 10(-8) M glucagon. This action of glucagon was augmented by the phosphodiesterase inhibitors, theophylline, SQ 20,009, and papaverine. Treatment of the hepatocytes with trypsin markedly reduced the response to glucagon.  相似文献   

10.
In this study the role of cyclic AMP in the antilpolytic effect of the alpha-adrenergic agents methoxamine and phenylephrine in hamster epididymal adipocytes was studied. Both methozamine and phenylephrine lowered the very high levels of cyclic AMP that were produced by high concentrations of isoproterenol (10 muM) or ACTH (100 MU/ml), and partially inhibited lipolysis. When lower concentrations of isoproterenol were used, the antilipolytic effect of phenylephrine and methoxamine was still evident. Under these conditions methoxamine produced a slight suppression of cyclic AMP levels while phenylephrine increased accumulation of cyclic AMP. It follows, therefore, that the inhibition of lipolysis by the alpha agents is most likely unrelated to changes in cyclic AMP levels; in contrast, phenylephrine promoted lipolysis and increased cyclic AMP levels. When the stimulus for lipolysis was provided by methylxanthines a different picture emerged. Methoxamine antagonized lipolysis and lowered cyclic AMP levels. In the presence of propranolol, phenylephrine lowered cyclic AMP levels and suppressed methylxanthine-accelerated lipolysis. It is suggested that when methy xanthines provide the stimulus for lipolysis the antilipolytic effect of methoxamine and phenylephrine (in the presence of propranolol) may be mediated by the suppression in cyclic AMP levels.  相似文献   

11.
Agents known to affect intracellular levels of cyclic AMP in many diverse systems have been tested for their effect on the chemotaxis induced by Escherichia coli culture filtrates, spontaneous motility and cyclic AMP levels of rabbit peritoneal neutrophils. Prostaglandin E1 and A1 but not prostaglandin F2alpha increased neutrophil cyclic AMP levels and, correspondingly, only the former two prostaglandins inhibited chemotaxis. Nevertheless, a quantitative relationship between prostaglandin stimulation of cyclic AMP and inhibition of chemotaxis could not be found. Epinephrine, isoproterenol, and, to a much lesser extent, norepinephrine increased neutrophil cyclic AMP through beta adrenergic stimulation. Only epinephrine and isoproterenol inhibited chemotaxis, but the inhibition was variable and not related to the ability of these catecholamines to increase intracellular cyclic AMP. Cholera toxin increased neutrophil cyclic AMP after a 30-min lag period which paralled its inhibitory effect on chemotaxis and spontaneous motility. However, the effect on chemotaxis require 50 ng/ml of toxin whereas the effect on cyclic AMP was manifested at 2 ng/ml of toxin. Prior to 30-min preincubation there was no effect of even 1250 ng/ml of toxin on either cyclic AMP or chemotaxis. Choleragenoid prevented the effects of toxin on both cyclic AMP and chemotaxis. The bacterial chemotactic factor obtained from E. coli culture filtrates did not effect a measurable change in levels of neutrophil cyclic AMP. The data indicate that even though cyclic AMP is not, in the main sequence of events, triggering the chemotactic response, increases in neutrophil cyclic AMP may modulate the movement and thus the chemotactic responsiveness of the neutrophil.  相似文献   

12.
Television video microscopy combined with photoelectric recording was used to determine the influence of a number of positive inotropic agents on the amplitude (peak height) and the course of the contraction of electrically paced myocytes in 4-day monolayer cultures derived from the heart ventricles of 1 to 2-day old rats. Cyclic AMP was determined in parallel cultures of the same cell population. Reductions in time to 90% of peak height, 90% of relaxation time, and duration of contraction caused by peak height-augmenting concentrations of isoproterenol, epinephrine, dibutyryl cyclic AMP, and 1-methyl-3-isobutylxanthine, but not of theophylline, correlated with rises in cellular cyclic AMP levels. Ouabain, a rise in extracellular CaCl2, and, in some experiments, phenylephrine in the presence of propranolol increased peak height, but did not change time to 90% of peak height, 90% of relaxation time, duration of contraction, and cyclic AMP content. These responses are compared to those observed by other authors in intact cardiac muscle and are discussed in the light of evidence linking increased myocardial cyclic AMP levels with an abbreviation of systole.  相似文献   

13.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10(-4) M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by alpha-adrenergic blockade with phenoxybenzamine. Epinephrine (4 - 10(-5) M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the beta-blocking agent, propranolol. Pure alpha-adrenergic stimulation with methoxamine (4 - 10(-4) M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 - 10(-6) M, isoproterenol (a beta-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 - 10(-5) M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cyclic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 - 10(-6) M). These data strongly suggest that cholinergic muscarinic agonists and alpha-adrenergic agonists stimulate amylase output in rabit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by alpha-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this tissue to the effects of cholinergic stimuli.  相似文献   

14.
Corticotropin releasing factor (CRF), (?) isoproterenol and vasoactive intestinal peptide (VIP) induced cyclic AMP synthesis and the release of immunoreactive adrenocorticotropin hormone (ACTH) from clonal mouse AtT-20 pituitary tumor cells. CRF and (?) isoproterenol together produced an additive increase in cyclic AMP formation but a less than additive effect on ACTH secretion. VIP with either CRF or (?) isoproterenol produced additive increases in both cyclic AMP and ACTH secretion. Forskolin, an activator of adenylate cyclase stimulated the release of ACTH suggesting that cyclic AMP mediates some of the effects of hormone-receptor activation on ACTH secretion. The action of all three receptor agonists and forskolin on ACTH release was blocked by dexamethasone treatment. The release process, but not the changes in cyclic AMP synthesis was calcium dependent with all these hormones. The calcium ionophore, A-23187, increased ACTH secretion without altering intracellular cyclic AMP content. Its effect on secretion was not additive with either CRF, (?) isoproterenol or VIP. These observations indicate that hormone-induced regulation of ACTH secretion converges at varying intracellular locations.  相似文献   

15.
Crystallization of alpha 1-acid glycoprotein   总被引:1,自引:0,他引:1  
A possible link between cellular cyclic AMP content and Na+K+ATPase activity was investigated in homogenates of rat kidney. Enzyme kinetics of Mg2+ and Na+K+ATPase were run in the presence of cyclic AMP, dibutyryl cAMP and compounds expected to elevate cyclic AMP levels such as forskolin, a potent adenylate cyclase activator, IBMX, an inhibitor of phosphodiesterases, and the beta-agonist isoproterenol. Medullary Na+K+ATPase is strongly inhibited by cyclic AMP whereas cortical Na+K+ATPase was stimulated in the same conditions. The correlation between ATPase activity and cellular cyclic AMP content supports the concept of a possible regulation of the enzyme by cyclic AMP.  相似文献   

16.
Norepinephrine (arterenol) and a synthetic catecholamine, isoproterenol, increase the production of ammonia and glucose from glutamine and glutamate by rat renal cortical slices in vitro. The stimulation of both ammonia and glucose production by isoproterenol was greater than that observed with identical molar concentrations of arterenol. Isoproterenol markedly increased the concentration of cyclic AMP in rat renal cortical slices. Addition of propranolol, a β-adrenergic blocking agent, prevented the increase of cyclic AMP levels induced by isoproterenol. Cyclic AMP increased both ammoniagenesis and gluconeogenesis by kidney cortex. Thehe increase in ammonia production produced by isoprotenol was blocked by the addition of propranolol. It is concluded that the increase in ammonia and glucose production caused by isoproterenol is mediated through the release of cyclic AMP.  相似文献   

17.
The effects of acetylcholine chloride and isoproterenol on myocardiial cyclic GMP, cyclic AMP and on isometric tension were studied in isolated electrically driven rabbit atria. Acetylcholine (0.5 muM) produced a significant decrease in isometric force that was associated with a significant elevation in atrial cyclic GMP. Cyclic AMP was significantly lowered at 15 seconds after the addition of acetylcholine, but was only slightly decreased at earlier time periods. Both the negative inotropic action and increase in cyclic GMP after addition of acetylcholine were blocked by atropine. Isoproterenol (0.1 muM) produced a significant increase in isometric tension that was associated with a significant elevation in atrial cyclic AMP levels, whereas cyclic GMP levels were not changed. These effects were blocked by practolol. The increases in atrial cyclic GMP and cyclic AMP following addition of acetylcholine and isoproterenol, respectively, preceded the changes in isometric tension in response to these agents. These data support the hypothesis that changes in intracellular levels of cyclic AMP and cyclic GMP may mediate the positive and negative inotropic effects of adrenergic and cholinergic agents.  相似文献   

18.
The effect of theophylline and isoproterenol on bovine tracheal smooth muscle tension and cyclic AMP levels was investigated. Concentrations of isoproterenol (4 × 10?6 M) and theophylline (10 mM) that relaxed carbachol-contracted tracheal muscle by 85–95% did not significantly elevate control levels of cyclic AMP. In the absence of carbachol, several-fold increases in cyclic AMP were caused by isoproterenol although no elevations by theophylline were measurable. However, when isoproterenol and theophylline were administered together, theophylline potentiated the rise in cyclic AMP caused by isoproterenol. Phosphodiesterase studies in tracheal muscle showed the presence of a high and a low Km enzyme which were inhibited by theophylline. Cyclic GMP levels were elevated in muscles contracted by carbachol as well as in carbachol-contracted muscles that had been relaxed by theophylline. In non-tension studies, in which the tracheal muscle was not under isometric tension, carbachol or theophylline alone increased cyclic GMP and together they synergistically elevated cyclic GMP. Atropine blocked the elevation caused by carbachol but not that caused by theophylline. In contrast to theophylline, isoproterenol did not elevate cyclic GMP, and in carbachol-contracted muscles that had been relaxed by isoproterenol, cyclic GMP levels were no different from control. Also, in non-tension studies, isoproterenol decreased basal cyclic GMP and antagonized the increase in cyclic GMP due to carbachol.The results indicate that whole-tissue levels of cyclic AMP and cyclic GMP do not correlate with the state of tracheal smooth muscle tension. Cyclic GMP levels do not clearly correlate with either contraction or relaxation. The inhibition by carbachol of increases in cyclic AMP due to isoproterenol and the inhibition by isoproterenol of increases in cyclic GMP due to carbachol provide evidence for a reciprocal cholinergic-adrenergic antagonism of cyclic AMP and cyclic GMP levels. The antagonism did not appear to be due to either cyclic nucleotide affecting the elevation of the other since the levels of both cyclic nucleotides were depressed.  相似文献   

19.
The cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels of ventricles isolated from 15- to 20-day-old chick embryos and 0- to 3-day-old hatched chicks were compared to clarify the mechanism underlying the change in sensitivity to isoproterenol during perinatal developmental stages when the functional sympathetic innervation has been completely achieved. Isoproterenol produced a positive inotropic effect on ventricles isolated from both embryonic and hatched chicks, but the ventricles from the hatched chicks were more sensitive. At both developmental stages sotalol was an equipotent antagonist of isoproterenol. 3-Isobutyl-1-methylxanthine (IBMX) produced an increment in the contractile force of the ventricles at both stages, but the ventricles from the hatched chicks responded to lower doses of IBMX. The reactivity to isoproterenol in increasing cyclic AMP level was significantly higher in the hatched ventricles than in the embryonic ventricles. The results suggest that the different sensitivities to isoproterenol between embryonic and newly hatched chick ventricles may be due to some changes in the process for cyclic AMP production.  相似文献   

20.
G A Nickols  W H Cline 《Life sciences》1987,40(24):2351-2359
Parathyroid hormone is a potent vasodilator in vivo and relaxes vascular tissue in vitro. Since parathyroid hormone action in kidney and bone is thought to be mediated by stimulation of cellular cyclic AMP production, the present study was designed to monitor changes in cyclic AMP and cyclic GMP in vascular tissue during relaxation by parathyroid hormone. Rabbit aortic strips were quick-frozen at various times after exposure to parathyroid hormone and the percent relaxation and cyclic nucleotide levels were determined. Cyclic AMP concentrations were elevated about 3-fold within 30 seconds after treatment with hormone. This corresponded to a 10% relaxation of the norepinephrine-contracted tissue. After five minutes, cyclic AMP was still elevated 2-fold above basal and the relaxation response was maximal (36%). The cyclic AMP and relaxation responses to parathyroid hormone were markedly potentiated by forskolin or methylisobutylxanthine. Parathyroid hormone produced a small but significant increase in cyclic GMP concentrations only at early time points whereas sodium nitroprusside substantially increased cyclic GMP and relaxed the strips at all times studied. The increase in cyclic AMP levels after exposure to parathyroid hormone occurred prior to or coincident with the onset of relaxation of the aortic strips. These findings are supportive of the hypothesis that the vascular actions of parathyroid hormone involve cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号