首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
UDP-N-acetylgalactosamine--GM3 acetylgalactosaminyltransferase (GM2-synthase) was studied in a Golgi-rich fraction from rat liver. Activity in a cell-free system required the presence of detergents; octyl glucoside was found to be the most effective in stimulating the enzyme. Optimal activity of GM2-synthase was obtained at pH 7.2, in the presence of 0.8% octyl glucoside, 10 mM Mn2+ and 5 mM CDP-choline. The latter was used to counteract the rapid sugar nucleotide hydrolysis caused by a nucleotide pyrophosphatase activity in the Golgi fraction. The apparent Km values for UDP-N-acetylgalactosamine and added GM3 were 0.035 mM and 0.1 mM, respectively. Different results were obtained if endogenous GM3 only was used as the glycolipid acceptor. In this case, the apparent Km value for UDP-N-acetylgalactosamine was 0.18 mM and Co2+ and Fe2+ exceeded Mn2+ in activating GM2-synthase. Under optimal assay conditions and in the presence of added GM3 and 5 mM CDP-choline, the specific activity of the enriched Golgi fraction was measured to be 25-30 nmol X mg protein-1 X h-1; with endogenous GM3 as the sole glycolipid acceptor, V was calculated to be 9 nmol X mg protein-1 X h-1.  相似文献   

2.
A CMP-sialic acid: GM3 sialyltransferase (GD3 synthase) and a CMP-sialic acid: LacCer sialyltransferase (GM3 synthase) have been purified 10,000- and 3,000-fold, respectively, from the Triton X-100 extract of rat brain. The two enzymes were purified and resolved by affinity chromatography on two successive CDP-Sepharose columns by NaCl gradient elution. Final purification of GD3 synthase was achieved by specific elution from a 'GM3 acid'-Sepharose column with buffer containing GM3. Sodium dodecylsulfate-gel electrophoresis of GD3 synthase revealed a single major protein band with an apparent molecular weight of 55,000.  相似文献   

3.
Several GM3 derivatives have been synthesized. Among them were lyso-GM3 derivatives and GM3 analogues with modifications in the sialic acid moiety. They were used as glycolipid acceptors in assays for GM2 and GD3 synthase of rat liver Golgi. Analysis of the resulting enzyme activities and of the reaction products revealed different substrate specificities for GM2 and GD3 synthase although the normal glycolipid acceptor for both transferases is ganglioside GM3. Specificity of GD3 synthase is strongly determined by the substrate's negative charge and the acyl residue in amide bond to the amino group of neuraminic acid, while GM2 synthase reacts quite indifferently to these changes in the sialic moiety of the substrate. Both enzymes seem to be sensitive to the spatial extension at the neuraminic acid's carboxylic group.  相似文献   

4.
An enzyme activity which catalyzed the transfer of galactose from UDP-galactose to GM2 ganglioside was demonstrated in rat liver homogenate and enriched 38-fold in specific activity by preparation of Golgi membranes. This activity could be solubilized from Golgi membranes by sonication and extraction with 1% Triton X-100. The solubilized activity catalyzed the formation of GM1 ganglioside and was completely dependent upon the addition of acceptor. The rate of galactose incorporation was constant for up to 5 h at 30 degrees C. This enzyme activity was further purified by gel filtration on Sepharose CL-6B and ion exchange chromatography on DEAE-Sepharose. The elution position on gel filtration corresponded to a molecular weight for the enzyme of 38,000 which was in good agreement with that obtained by sedimentation velocity studies. Ion exchange chromatography resolved GM2 ganglioside galactosyltransferase into two species. The more basic enzyme (I) comprising 28% of the recovered activity was not retarded by the column, whereas enzyme II was eluted from the resin following the application of a salt gradient. Net purification was 120- to 140-fold for each enzyme with a total recovery of 42%. Unlike the activity in the Golgi extract, the purified enzymes I and II were labile to freezing and could be stored at -20 degrees C only in the presence of 50% glycerol. Both enzymes I and II had similar molecular weights and Michaelis constants and both had a strict requirement for Mn2+. Properties which distinguish the two enzymes included pH optima (enzyme I 7.0, enzyme II 6.0) and surfactant requirements. Neither enzyme was active following removal of Triton X-100 from the preparation. Among a series of glycolipids tested for ability to serve as substrates for galactose transfer only GM2 and asialo-GM2 ganglioside served as acceptors.  相似文献   

5.
beta-Alanine synthase (EC 3.5.1.6) catalyzes the conversion of N-carbamyl-beta-alanine to beta-alanine, ammonia and CO2. The enzyme has been purified to apparent homogeneity from calf liver. The molecular size, pH optimum and substrate specificity have been determined. Sequence alignment of beta-alanine synthases with N-carbamyl-D-amino acid amidohydrolase from Agrobacter sp. revealed the conservation of a catalytically important triad Glu-Lys-Cys, most likely involved in the breakdown of N-carbamyl-beta-alanine.  相似文献   

6.
7.
A UDP-N-acetylgalactosamine:globotriaosylceramide beta-3-N-acetylgalactosaminyltransferase which catalyzes the conversion of human blood group Pk antigen into P antigen has been purified over 18,000-fold in 4% yield from a Triton X-100 extract of canine spleen microsomes by affinity chromatography on UDP-hexanolamine-Sepharose and globotriaosylceramide acid-Sepharose. The purified enzyme migrates as two major bands with apparent molecular weights of 64,000 and 57,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single band, with enzyme activity, was observed in nondenaturing acrylamide gels containing Triton X-100. Mn2+ was required for activity, and the pH optimum was 6.9. Km values for UDP-GalNAc and globotriaosylceramide were 14 and 2.5 microM, respectively. Studies on substrate specificities indicate that the preferred substrates have the general structure Gal alpha 1-4Gal-OR in which the nature of the R moiety has relatively little effect on activity. An antibody against the purified enzyme eliminated the activity of the enzyme, but did not neutralize the alpha-3-N-acetylgalactosaminyltransferase involved in the biosynthesis of Forssman glycolipid.  相似文献   

8.
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (EC 4.1.3.5) was purified to homogeneity from ox liver and obtained essentially free from acetoacetyl-CoA thiolase activity. The purification procedure included substrate elution from cellulose phosphate and chromatofocusing. The relative molecular mas was about 100 000 and S20,w0 was 6.36S. The enzyme appears to be a dimer of identical subunits (Mr 47 900). The Km for acetoacetyl-CoA is extremely low (less than 0.5 microM), and acetoacetyl-CoA (Acac-CoA) gives marked substrate inhibition (KiAcac-CoA = 3.5 microM) that is competitive with respect to acetyl-CoA. Both CoA and DL-3-hydroxy-3-methylglutaryl-CoA give mixed product inhibition with respect to acetyl-CoA, which is compatible with a Ping Pong mechanism in which both products can form kinetically significant complexes with two forms of the enzyme. The two forms are most likely to be free enzyme and an acetyl-enzyme intermediate.  相似文献   

9.
Cystathionine β-synthase has been isolated from human liver in two enzymically active forms. Both enzymes, α and β possess a molecular weight of 250,000 and are dependent upon pyridoxal phosphate as a cofactor.  相似文献   

10.
11.
The enzyme which catalyzes the transfer of galactose from UDP-galactose to lactosylceramide (LacCer) was obtained in a 32,000-fold purified and apparently homogeneous form from rat liver by a procedure involving affinity chromatography on UDP-hexanolamine-Sepharose and LacCer-Sepharose. The enzyme is composed of two nonidentical subunits whose apparent molecular weights are 65,000 and 22,000. Methylation and hydrolysis of the product formed by incubation of the enzyme with UDP-galactose and [3H]LacCer yielded 2,3,6-tri-O-methyl-[3H]galactose, indicating that a galactose residue was introduced to position C-4 of the terminal galactose of the LacCer. The product also specifically reacted with monoclonal antibody directed to globotriaosylceramide (Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer). This indicates that the purified enzyme is exclusively alpha 1-4-galactosyltransferase. Studies on substrate specificity indicate that the purified enzyme is highly specific for the synthesis of GbOse3Cer and is clearly distinct from the enzymes responsible for the formation of iGbOse3Cer (Gal alpha 1-3Gal beta 1-4Glc-Cer) and blood group-B substance, which possess alpha 1-3 galactosidic linkages at the nonreducing termini. The enzyme is also distinct from the alpha 1-4-galactosyltransferase which catalyzes the formation of galabiaosylceramide (Gal alpha 1-4Gal beta 1-1Cer) and IV4Gal-nLacOse4 (P1 antigen). These studies represent the first report of the properties of a highly purified alpha-galactosyltransferase catalyzing the transfer of sugar residues to glycolipids.  相似文献   

12.
Urocaninase (EC 4.2.1.4.9) from rat liver homogenate has been purified, using protein precipitation at pH 4,8, ammonium sulfate fractionation, gel-filtration through Sephadex G-200 and chromatography on DEAE-cellulose. Upon DEAE-cellulose chromatography urocaninase is separated from the proteins possessing the activity of 3',5'-AMP-dependent protein kinase. The purified enzyme becomes activated after addition of ATP and exogenous protein kinase or one of the fractions resulting from DEAE-cellulose chromatography. Using [gamma-32P]ATP, it has been shown that such activation is accompanied by incorporation of at least one phosphate residue into the enzyme molecule. The mol. weight of urocaninase as determined by gel-filtration is about 110 000. The Km value for urocanate is 15 . 10(-6) M, the isoelectric point lies at 5,6. The mechanism of regulation of the urocaninase activity in rat liver is discussed.  相似文献   

13.
There are two 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) in rat liver, one in mitochondria (type I enzyme), and another in peroxisomes (type II enzyme). In a series of the studies on the properties and the physiological roles of fatty acid oxidation systems in both organelles, the two enzymes were purified and compared for their properties. The final preparations obtained were judged to be homogeneous based on the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sedimentation velocity analysis. Type I enzyme was composed of two identical subunits of molecular weight of 32,000, whereas type II enzyme was a monomeric enzyme having a molecular weight of 70,000–77,000. These subunit structures were confirmed by the results of fluorescence studies. Both enzymes were different in amino acid compositions, especially in the contents of tryptophan and half-cystine. Antibodies against them formed single precipitin lines for the corresponding enzymes, but not for the others when subjected to an Ouchterlony double-diffusion test. The Km values of type II enzyme for various substrates were lower than those of type I enzyme except those for acetoacetyl-CoA. As for 3-hydroxyacyl-CoA substrates, both enzymes had lower Km's for longer-chain substrates. The V for the substrates of C4C10 were similar for each enzyme, though the value of type II enzyme for C10 substrate was rather lower. The results of fluorescence studies suggested that their dissociation constants for NADH were lower and those for NAD+ were higher at lower pH. Both enzymes were specific to l-form of 3-hydroxyacyl-CoA substrate. The optimal pH of the forward reaction of type I and type II enzymes was 9.6 and 9.8, and of the reverse reaction, 4.5 and 6.2, respectively. From these results they were concluded to be completely different enzymes.  相似文献   

14.
Purification and properties of ornithine decarboxylase from rat liver   总被引:6,自引:0,他引:6  
Ornithine decarboxylase was purified to homogeneity, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and polyacrylamide gel electrofocusing, about 710,000-fold with a 35% yield from the liver cytosol of thioacetamide-treated rats. The final specific activity was approximately 24,400 nmol/min/mg of protein. The apparent molecular weight of the enzyme determined by gel filtration analyses on Sephacryl S-200 was 55,000 in the presence of 0.25 M NaCl and 145,000 in its absence. The minimum molecular weight of the enzyme was determined to be 54,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme was estimated as 5.7 in the presence of 8 M urea. Some catalytic properties of the enzyme were also studied.  相似文献   

15.
16.
Asparagine synthetase (L-aspartate: ammonia ligase (AMP-forming, EC 6.3.1.1) activity in rat liver increased when the animals were put on a low casein diet. The enzyme was purified about 280-fold from the supernatant of rat liver homogenate by a procedure comprising ammonium sulfate fractionation, DEAE-Sepharose column chromatography, and Sephadex G-100 gel filtration. The optimal pH of the enzyme was in the range 7.4–7.6 with glutamine as an amide donor. The molecular weight was estimated to be approximately 110 000 by gel filtration. Chloride ion was required for the enzyme activity. The apparent Km values for L-aspartate, L-glutamine, ammonium chloride, ATP, and Cl were calculated to be 0.76, 4.3, 10, 0.14, and 1.7 mM, respectively. The activity was inhibited by l-asparagine, nucleoside triphosphates except ATP, and sulflhdryl reagents.It has been observed that the properties of asparagine synthetase from rat liver are not different from those of tumors such as Novikoff hepatoma and RADA 1.  相似文献   

17.
Purification and properties of glycine N-methyltransferase from rat liver   总被引:4,自引:0,他引:4  
Glycine N-methyltransferase (EC 2.1.1.20) has been purified to homogeneity from rat liver. The enzyme has a molecular weight of 132,000 by sedimentation equilibrium method. This value is in good agreement with a value of 130,000 obtained by Sephadex G-150 chromatography. The molecular weight of the denatured enzyme as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate is 31,500. The numbers of peptides obtained by tryptic digestion and by cyanogen bromide cleavage are one-fourth of those expected from the contents of lysine plus arginine residues and methionine residues, respectively. By Edman degradation, phenylthiohydantoin-leucine is the only amino acid derivative released from the enzyme. Neither sugar nor phospholipid is detected in the purified preparation. These data indicate that the rat liver glycine N-methyltransferase is a simple protein consisting of 4 identical subunits. The enzyme has an isoelectric pH of 6.4, and is most active at pH 9.0. From the circular dichroism spectrum, an alpha helix content of about 11% is calculated. Whereas the initial velocity as a function of glycine concentration gives a Michaelis-Menten kinetics, the enzyme shows a positive cooperativity with respect to S-adenosylmethionine. The concentrations of glycine and S-adenosylmethionine which give a half-maximum velocity are 0.13 mM and 30 microM, respectively, at pH 7.4 and 25 degrees C.  相似文献   

18.
Sialic acids are a group of carboxylated amino sugars important for a variety of cellular functions. N-Acetylneuraminic acid (Neu5Ac) is the predominant sialic acid in nature. Neu5Ac-9-phosphate synthase catalyzes the formation of Neu5Ac-9-phosphate from N-acetylmannosamine-6-phosphate and phosphoenolpyruvate. Neu5Ac-9-phosphate synthase was purified 11,700-fold from rat liver cytosol to apparent homogeneity by ammonium sulfate precipitation, chromatography on hydroxylapatite, phenyl-Sepharose, MonoQ, and finally gel filtration. SDS-PAGE and gel filtration chromatography indicated that the enzyme is a dimer composed of 37-kDa subunits. Analysis of trypic peptides by MALDI-TOF MS verified a high sequence similarity to the corresponding murine enzyme. The K(m) values of Neu5Ac-9-phosphate synthase were 35 microM for N-acetylmannosamine-6-phosphate and 100 microM for phosphoenolpyruvate. The enzyme displayed an absolute requirement for divalent cations, Mn(2+), Fe(2+), and Mg(2+) being the most effective. In contrast to human Neu5Ac-9-phosphate synthase, the rat enzyme did not utilize mannose-6-phosphate in the synthesis of 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid 9-phosphate. Neu5Ac-9-phosphate synthase was inactivated by the sulfhydryl modifying reagents, 5,5'-dithio-bis (2-nitrobenzoic acid) and N-ethylmaleimide, and protected from inactivation by the presence of the substrate phosphoenolpyruvate, but not by the presence of N-acetylmannosamine-6-phosphate, showing that at least one cysteine residue is located in the active site of the enzyme.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号