首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and cell volume of Euglena gracilis in different media.   总被引:2,自引:0,他引:2       下载免费PDF全文
It is necessary to propagate Euglena gracilis cells for several days after transfer from one medium to another to establish the steady state of balanced growth. Steady-state growth was established in minimal and in complex medium. Specific growth rates and cell volume distributions were computed for each culture medium. Mean cell volume of E. gracilis is not uniquely correlated with the specific growth rate.  相似文献   

2.
It is necessary to propagate Euglena gracilis cells for several days after transfer from one medium to another to establish the steady state of balanced growth. Steady-state growth was established in minimal and in complex medium. Specific growth rates and cell volume distributions were computed for each culture medium. Mean cell volume of E. gracilis is not uniquely correlated with the specific growth rate.  相似文献   

3.
SYNOPSIS. Streptomycin-bleached Euglena gracilis , strain Z, was cultivated under conditions which yielded good growth rates and high cell densities. Dividing cells produced only small amounts of carotenoid. After the cessation of cell division the carotenoid content of the cells increased rapidly. During the major period of carotenoid synthesis the cell number remained unchanged but the packed cell volume decreased. Some similar observations on carotenoid production by normal dark-grown Euglena are noted.  相似文献   

4.
Using monoclonal antibodies directed against different cytoplasmic isoforms of hsp70 proteins, namely, the constitutive hsc73 and the inducible hsp72 isoforms, we found that one isoform related to hsc73 was present in Euglena gracilis. This hsc73-like protein is expressed with a higher rate of synthesis in cells growing under heat shock than in control cells. Moreover, in cadmium-resistant cells, cultured at normal growth temperature, the rate of synthesis of this protein is constitutively increased. These results indicate that a heat-shock protein related to hsc73 is present in an ancestral eukaryote, Euglena gracilis, and that this protein may be constitutive and stress inducible as well.  相似文献   

5.
1. Euglena cells were grown in culture media containing either 20mm-phosphate or 20mum-phosphate, with ethanol or glucose as the sole source of carbon, and gassed with either air+carbon dioxide (95:5) or oxygen+carbon dioxide (95:5) at atmospheric pressure. 2. After growth in low-phosphate medium with ethanol as substrate, the cells developed signs of oxygen toxicity, as indicated by a decreased rate of respiration, a decreased net synthesis of paramylum and a failure to resume growth on replenishment of phosphate. 3. After growth in low-phosphate medium with glucose as substrate, the signs of oxygen toxicity were less apparent. 4. During phosphate deprivation the carotenoid content of Euglena increased more than threefold. This increase was largely prevented by exposure of the cells to oxygen+carbon dioxide (95:5) during growth. Oxygenation appears to interfere with ring closure of the common carotenoid precursor. 5. Mitochondria obtained from Euglena exposed to oxygen during phosphate deprivation, i.e. when signs of oxygen toxicity were evident, had greatly decreased activities of succinate dehydrogenase, succinate-cytochrome c oxidoreductase and NADH-cytochrome c oxidoreductase, compared with mitochondria obtained from Euglena exposed to oxygen in medium containing 20mm-phosphate.  相似文献   

6.
The contents of Euglena gracilis cells can be separated in vivo by ultracentrifugation. Within the unbroken cell, each set of components forms a distinct layer according to their respective densities. The degree of segregation increases with both the g-force and the time of centrifugation, up to a maximum at 100,000 x g for 1 h, when six distinct strata can be observed. When returned to normal growth conditions, essentially all the cells return to the normal state and growth pattern. Greater g-forces or longer exposures do not alter the observable strata, but the ability of the cells to recover is diminished. Smaller g-forces result in less separation of cellular contents and all cells recover, even after 18 h of exposure. Euglena cells stratified at 100,000 x g for 1 h were returned to normal growth conditions; recovery was followed microscopically and by the rate of utilization of oxygen as well as that of the single carbon source. The cells recovered their normal state within 1 to 2 h, which is only a tenth of the normal doubling time. The mechanism for this recovery involves a natural process of change in cell shape caused by contraction and relaxation of the pellicle, a cell surface structure.  相似文献   

7.
Daily light-dark cycles can entrain cell growth and division cycles in populations of algae growing in nutrient limited continuous cultures, or cyclostats. In this study a simple model for the flux of cells between discrete developmental stages is formulated for periodic cyclostat cultures of algae. Cell growth, in terms of volume, was set as being constant within a given developmental compartment, but variable between compartments. Growth within a given compartment or transition between compartments was restricted to specific intervals of the subjective day. The model was calibrated to phosphate limited cyclostat growth of Euglena gracilis, with the intervals for transition between compartments fixed at the times relative to the subjective dawn corresponding to critical transition points in the phased cell cycle of this organism. The model output for mean population volume per cell agreed well with experimental data. Although greatly simplified, the periodic behavior of the model volume frequency distributions for the discrete compartments provide reasonable approximation of experimentally determined distributions.  相似文献   

8.
The influence of pH 3–10 on the growth, motility and photosynthesis inEuglena gracilis was demonstrated during a 7-d cultivation. The cells did not survive at pH<4 and >8, highest growth rate being detected at pH 7. Motility followed a similar patterns as growth rate. Photosynthetic response curves were shown to be of the same type over the whole pH range. High respiration was characteristic for cells grown at pH 5 and 6, the lowest one at 7. At high and also at low pH more active respiration was found which can be considered as a protective response on proton stress. Respiration was not completely inhibited with potassium cyanide. Photosynthesis was the most effective at pH 6; lower and higher pH decreased photosynthetic efficiency. pH affected more the growth rate than the photosynthesis.  相似文献   

9.
The growth of photoautotrophic Euglena gracilis Z is strongly inhibited by manganese deficiency, whereas chlorophyll formation is not appreciably affected. The galactosyldiglyceride content of the manganese-deficient photo-autotrophic Euglena was about 40% lower on the basis of either chlorophyll content or dry weight. When dark-grown cultures of Euglena were grown photoheterotrophically in light sufficient for the greening of the cells, or photosynthesis, manganese deficiency resulted in a reduction of the cellular content of chlorophyll and galactosyldiglycerides to 40% of control values, indicating interference with chloroplast formation. The fatty acids of the photoheterotrophic manganese-deficient cells were mainly saturated, with an unusual accumulation (about 45%) of the total fatty acids) of myristic acid. In spite of this, the galactosyldiglycerides contain mainly unsaturated fatty acids. Ninety per cent of the fatty acids of the monogalactosyldiglyceride are unsaturated, including large amounts of alpha-linolenic acid. The ratio of chlorophyll to galactosyldiglyceride content of the cells was remarkably constant at all manganese deficiency levels.  相似文献   

10.
When UV-treated cells of Euglena gracilis var. bacillaris are incubated in the dark in a nutrient medium which permits cell division, they lose the ability to be photoreactivated. The rate of this loss increases with the UV dose. For any given UV dose, the rate of decay increases with increasing growth rate. The same phenomena are observed in light-grown and in dark-grown cells, although the sensitivity to UV of the light-grown cells is smaller by a factor of 1.7. The kinetics of photoreactivation (PR) change during the decay of photoreactivability only if the cells are incubated in growth medium. A UV-inactivation curve for cells photoreactivated only after appreciable PR shows the same slope as that for untreated cells (number of UV-sensitive targets). These results are discussed from the point of view of possible models.  相似文献   

11.
SYNOPSIS. The glyoxylate cycle operates at a high level in Euglena gracilis when acetate is the only carbon source, and at a low level when glucose is the only carbon source, as indicated by activities of malate synthase. Altho glucose causes a moderate repression of some of the enzymes of the glyoxylate cycle, it neither represses nor inhibits malate synthase. The specific activity of the malic enzyme was about 5-fold greater in acetate-grown Euglena than in glucose-grown cells, but the absolute rate of CO2 fixation was about twice as great in cells grown on glucose. The respiratory quotient was unity regardless of substrate.  相似文献   

12.
We have previously proposed that Euglena gracilis possesses a pathway for the production of ascorbate (AsA) through d-galacturonate/L-galactonate as representative intermediates ( Shigeoka, S., Nakano, Y., and Kitaoka, S. (1979) J. Nutr. Sci. Vitaminol. 25, 299-307 ). However, genetic evidence proving that the pathway exists has not been obtained yet. We report here the identification of a gene encoding aldonolactonase, which catalyzes a penultimate step of the biosynthesis of AsA in Euglena. By a BLAST search, we identified one candidate for the enzyme having significant sequence identity with rat gluconolactonase, a key enzyme for the production of AsA via d-glucuronate in animals. The purified recombinant aldonolactonase expressed in Escherichia coli catalyzed the reversible reaction of L-galactonate and L-galactono-1,4-lactone with zinc ion as a cofactor. The apparent K(m) values for L-galactonate and L-galactono-1,4-lactone were 1.55 +/- 0.3 and 1.67 +/- 0.39 mm, respectively. The cell growth of Euglena was arrested by silencing the expression of aldonolactonase through RNA interference and then restored to the normal state by supplementation with L-galactono-1,4-lactone. Euglena cells accumulated more AsA on supplementation with d-galacturonate than d-glucuronate. The present results indicate that aldonolactonase is significant for the biosynthesis of AsA in Euglena cells, which predominantly utilize the pathwayviad-galacturonate/L-galactonate. The identification of aldonolactonase provides the first insight into the biosynthesis of AsA via uronic acids as the intermediate in photosynthetic algae including Euglena.  相似文献   

13.
During vitamin B12 starvation of Euglena, a new peak appears in the cell volume distribution. Some cells are inhibited at a unique point in the cell cycle between the initiation of DNA synthesis and nuclear division. The mechanism of inhibition of other cells differs.  相似文献   

14.
The uptake and removal of mercury (added as HgCl2) from the culture medium by Euglena gracilis was studied. In cultures initiated in the light, cells accumulated a small fraction of the added heavy metal (5-13%). Mercury was both biologically and nonbiologically volatilized, and cell growth was partially inhibited; under these conditions the glutathione content was 3.2 nmol/10(6) cells. In contrast, in cultures initiated in the dark, mercury uptake by cells was two to three times higher, biological volatilization remained unchanged and nonbiological volatilization and growth were negligible; the glutathione content diminished to 1.4 nmol/10(6) cells. Biological mercury volatilization depended on cell density and metal concentration, but was light-independent. Thus, volatilization of mercury by Euglena appeared not to be an effective mechanism of resistance, whereas a high intracellular level of glutathione and a low mercury uptake seemed necessary for successful tolerance.  相似文献   

15.
The purified glutathione reductase was homogeneous on polyacrylamide-gel electrophoresis. It had an Mr of 79,000 and consisted of two subunits with a Mr of 40,000. The activity was maximum at pH 8.2 and 52 degrees C. It was specific for NADPH but not for NADH as the electron donor; the reverse reaction was not observed. The Km values for NADPH and GSSG were 14 and 55 microM respectively. The enzyme activity was markedly inhibited by thiol inhibitors and metal ions such as Hg2+, Cu2+ and Zn2+. Euglena cells contained total glutathione at millimolar concentration. GSH constituted more than 80% of total glutathione in Euglena under various growth conditions. Glutathione reductase was located solely in cytosol, as were L-ascorbate peroxidase and dehydroascorbate reductase, which constitute the oxidation-reduction cycle of L-ascorbate [Shigeoka et al. (1980) Biochem. J. 186, 377-380]. These results indicate that glutathione reductase functions to maintain glutathione in the reduced form and to accelerate the oxidation-reduction of L-ascorbate, which scavenges peroxides generated in Euglena cells.  相似文献   

16.
Malondialdehyde, a product of lipid oxidation, increased graduallywhen Euglena gracilis cells were bubbled with 240 µ1.liter–1ozone (delivery rate of 1µmolO3.min–1) for 120 min.Simultaneously, the sulfhydryl group content decreased by 36%during the treatment, which was mainly due to oxidation of proteinsulfhydryl groups. The molar amount of SH groups oxidized was3 times higher than that of fatty acid oxidized, indicatingthat sulfhydryl groups were more accessible or more easily oxidizedby O3 than fatty acids. When Euglena cells were allowed to recoverunder autotrophic growth conditions following O3 treatment,viable cells were incapable of dividing during the first 5 hof the recovery period but regenerated SH groups nearly to thecontrol level. The increase of SH content during this periodpreceded the resumption of cell division and the restorationof normal growth. These results suggest that the regenerationof SH groups by Euglena cells is a part of a mechanism involvedin the repair of oxidative damage caused by ozone and is anessential step for the initiation of cell division. (Received July 20, 1987; Accepted December 14, 1987)  相似文献   

17.
Pyruvate:NADP(+) oxidoreductase (PNO) is a thiamin pyrophosphate (TPP)-dependent enzyme that plays a central role in the respiratory metabolism of Euglena gracilis, which requires thiamin for growth. When thiamin was depleted in Euglena cells, PNO protein level was greatly reduced, but its mRNA level was barely changed. In addition, a large part of PNO occurred as an apoenzyme lacking TPP in the deficient cells. The PNO protein level increased rapidly, without changes in the mRNA level, after supplementation of thiamin into its deficient cells. In the deficient cells, in contrast to the sufficient ones, a steep decrease in the PNO protein level was induced when the cells were incubated with cycloheximide. Immunofluorescence microscopy indicated that most of the PNO localized in the mitochondria in either the sufficient or the deficient cells. These findings suggest that PNO is readily degraded when TPP is not provided in mitochondria, and consequently the PNO protein level is greatly reduced by thiamin deficiency in E. gracilis.  相似文献   

18.
Mitochondria, isolated from heterotrophic Euglena gracilis , have cyanide-resistant alternative oxidase (AOX) in their respiratory chain. Cells cultured under a variety of oxidative stress conditions (exposure to cyanide, cold, or H2O2) increased the AOX capacity in mitochondria and cells, although it was significant only under cold stress; AOX sensitivity to inhibitors was also increased by cold and cyanide stress. The value of AOX maximal activity reached 50% of total respiration below 20 degrees C, whereas AOX full activity was only 10-30% of total respiration above 20 degrees C. The optimum pH for AOX activity was 6.5 and for the cytochrome pathway was 7.3. GMP, AMP, pyruvate, or DTT did not alter AOX activity. The reduction level of the quinone pool was higher in mitochondria from cold-stressed than from control cells; furthermore, the content of reduced glutathione was lower in cold-stressed cells. Growth in the presence of an AOX inhibitor was not affected in control cells, whereas in cold-stressed cells, growth was diminished by 50%. Cyanide diminished growth in control cells by 50%, but in cold-stressed cells this inhibitor was ineffective. The data suggest that AOX activity is part of the cellular response to oxidative stress in Euglena .  相似文献   

19.
The effect of 2 mM AlCl3 on NAD+ kinase (E.C. 2.7.1.23) activity was studied using Euglena gracilis strain Z grown heterotrophically in darkness at pH 3.5 in the presence of lactate as sole carbon source. The Al-treatment slowed down the culture growth and suppressed the peak of NAD+ kinase activity, which characterizes the beginning of the exponential phase of growth of the control cell cultures. There are two possible explanations of the Al effect: it 1) either prevents the enzyme activation by the Ca-calmodulin (CaM) complex; or 2) suppresses the CaM-dependent NAD+ kinase form. In Euglena cells, a part of the NAD+ kinase activity is enhanced by EGTA and lowered by Ca2+: this peculiar NAD+ kinase activity is unaffected by the Al treatment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In our previous paper, we reported the restoration promoting effects of mineral-encaging zeolite-processed water, especially of a Fe-encaging one, on tributyltin chloride (TBTCl)-intoxicated Euglena gracilis. This present study extends the investigation on the behavior of TBTCl and a xenobiotic enzyme, cytochrome P-450, in Euglena cells incubated with or without Fe-encaging zeolite-processed water (FeZW). Subcellular fractionation of TBTCl-intoxicated Euglena cells, atomic absorption spectrophotometry, and GC analyses showed that TBTCl was rapidly incorporated into the cells to halt cell motility. GC-MS showed that FeZW promoted conversion of TBTCl to dibutyltin (DBT) as the major metabolite in the microsomal fraction of the cells. An in vitro incubation system with heat-treated microsomes did not convert TBTCl to DBT. The contribution of cytochrome P-450 in the microsomal fraction was suggested by an immunochemical method. The results suggest that the improvement of detoxification by FeZW in the TBT-intoxicated Euglena cells should be due to activation of biotransformation system of the Euglena cells by FeZW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号