共查询到20条相似文献,搜索用时 0 毫秒
1.
Jiménez AI Reyes EZ Cancino-Rodezno A Bedoya-Pérez LP Caballero-Flores GG Muriel-Millan LF Likitvivatanavong S Gill SS Bravo A Soberón M 《Insect biochemistry and molecular biology》2012,42(9):683-689
Bacillus thuringiensis subs. israelensis produces at least three Cry toxins (Cry4Aa, Cry4Ba, and Cry11Aa) that are active against Aedes aegypti larvae. Previous work characterized a GPI-anchored alkaline phosphatase (ALP1) as a Cry11Aa binding molecule from the gut of A. aegypti larvae. We show here that Cry4Ba binds ALP1, and that the binding and toxicity of Cry4Ba mutants located in loop 2 of domain II is correlated. Also, we analyzed the contribution of ALP1 toward the toxicity of Cry4Ba and Cry11Aa toxins by silencing the expression of this protein though RNAi. Efficient silencing of ALP1 was demonstrated by real-time quantitative PCR (qPCR) and Western blot. ALP1 silenced larvae showed tolerance to both Cry4Ba and Cry11Aa although the silenced larvae were more tolerant to Cry11Aa in comparison to Cry4Ba. Our results demonstrate that ALP1 is a functional receptor that plays an important role in the toxicity of the Cry4Ba and Cry11Aa proteins. 相似文献
2.
3.
Vachon V Préfontaine G Rang C Coux F Juteau M Schwartz JL Brousseau R Frutos R Laprade R Masson L 《Applied and environmental microbiology》2004,70(10):6123-6130
The role played by alpha-helix 4 of the Bacillus thuringiensis toxin Cry1Aa in pore formation was investigated by individually replacing each of its charged residues with either a neutral or an oppositely charged amino acid by using site-directed mutagenesis. The majority of the resulting mutant proteins were considerably less toxic to Manduca sexta larvae than Cry1Aa. Most mutants also had a considerably reduced ability to form pores in midgut brush border membrane vesicles isolated from this insect, with the notable exception of those with alterations at amino acid position 127 (R127N and R127E), located near the N-terminal end of the helix. Introducing a negatively charged amino acid near the C-terminal end of the helix (T142D and T143D), a region normally devoid of charged residues, completely abolished pore formation. For each mutant that retained detectable pore-forming activity, reduced membrane permeability to KCl was accompanied by an approximately equivalent reduction in permeability to N-methyl-D-glucamine hydrochloride, potassium gluconate, sucrose, and raffinose and by a reduced rate of pore formation. These results indicate that the main effect of the mutations was to decrease the toxin's ability to form pores. They provide further evidence that alpha-helix 4 plays a crucial role in the mechanism of pore formation. 相似文献
4.
Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae 总被引:2,自引:0,他引:2
Jiménez-Juárez N Muñoz-Garay C Gómez I Saab-Rincon G Damian-Almazo JY Gill SS Soberón M Bravo A 《The Journal of biological chemistry》2007,282(29):21222-21229
Pore-forming toxins are biological weapons produced by a variety of living organisms, particularly bacteria but also by insects, reptiles, and invertebrates. These proteins affect the cell membrane of their target, disrupting permeability and leading eventually to cell death. The pore-forming toxins typically transform from soluble, monomeric proteins to oligomers that form transmembrane channels. The Cry toxins produced by Bacillus thuringiensis are widely used as insecticides. These proteins have been recognized as pore-forming toxins, and their primary action is to lyse midgut epithelial cells in their target insect. To exert their toxic effect, a prepore oligomeric intermediate is formed leading finally to membrane-inserted oligomeric pores. To understand the role of Cry oligomeric pre-pore formation in the insecticidal activity we isolated point mutations that affected toxin oligomerization but not their binding with the cadherin-like, Bt-R(1) receptor. We show the helix alpha-3 in domain I contains sequences that could form coiled-coil structures important for oligomerization. Some single point mutants in this helix bound Bt-R(1) receptors with similar affinity as the wild-type toxin, but were affected in oligomerization and were severally impaired in pore formation and toxicity against Manduca sexta larvae. These data indicate the pre-pore oligomer and the toxin pore formation play a major role in the intoxication process of Cry1Ab toxin in insect larvae. 相似文献
5.
Samira Lpez-Molina Nathaly Alexandre do Nascimento Maria Helena Neves Lobo Silva-Filha Adn Guerrero Jorge Snchez Sabino Pacheco Sarjeet S. Gill Mario Sobern Alejandra Bravo 《PLoS pathogens》2021,17(1)
The insecticidal Cry11Aa and Cyt1Aa proteins are produced by Bacillus thuringiensis as crystal inclusions. They work synergistically inducing high toxicity against mosquito larvae. It was proposed that these crystal inclusions are rapidly solubilized and activated in the gut lumen, followed by pore formation in midgut cells killing the larvae. In addition, Cyt1Aa functions as a Cry11Aa binding receptor, inducing Cry11Aa oligomerization and membrane insertion. Here, we used fluorescent labeled crystals, protoxins or activated toxins for in vivo localization at nano-scale resolution. We show that after larvae were fed solubilized proteins, these proteins were not accumulated inside the gut and larvae were not killed. In contrast, if larvae were fed soluble non-toxic mutant proteins, these proteins were found inside the gut bound to gut-microvilli. Only feeding with crystal inclusions resulted in high larval mortality, suggesting that they have a role for an optimal intoxication process. At the macroscopic level, Cry11Aa completely degraded the gastric caeca structure and, in the presence of Cyt1Aa, this effect was observed at lower toxin-concentrations and at shorter periods. The labeled Cry11Aa crystal protein, after midgut processing, binds to the gastric caeca and posterior midgut regions, and also to anterior and medium regions where it is internalized in ordered “net like” structures, leading finally to cell break down. During synergism both Cry11Aa and Cyt1Aa toxins showed a dynamic layered array at the surface of apical microvilli, where Cry11Aa is localized in the lower layer closer to the cell cytoplasm, and Cyt1Aa is layered over Cry11Aa. This array depends on the pore formation activity of Cry11Aa, since the non-toxic mutant Cry11Aa-E97A, which is unable to oligomerize, inverted this array. Internalization of Cry11Aa was also observed during synergism. These data indicate that the mechanism of action of Cry11Aa is more complex than previously anticipated, and may involve additional steps besides pore-formation activity. 相似文献
6.
7.
通过体外重组的方法,实现了苏云金芽孢杆菌杀虫晶体蛋白Cry1Aa和Cry1Ca的功能性结构域Ⅰ、Ⅱ和Ⅲ的互换,得到了6株苏云金杆菌重组菌株BT-ACC,BT-AAC,BT-ACA,BT-CAA,BT-CCA和BT-CAC。SDS-PAGE和Westernblot分析表明,重组菌株BT-CAA和BT-CCA能表达产生135kDa左右的杂交晶体蛋白Cry1CAA和Cry1CCA,但其蛋白表达量较野生型Cry1Aa和Cry1Ca低。用牛胰蛋白酶对杂交晶体蛋白Cry1CAA、Cry1CCA及野生型Cry1Aa和Cry1Ca进行消化,证明所有晶体蛋白都能产生65kDa的活性毒素。电镜观察发现,野生菌株BT-Cry1Aa和BT-Cry1Ca形成典型的菱形晶体,而重组菌株BT-CCA和BT-CAA则形成球形或颗粒状杂交晶体。纯化晶体的生物测定显示,杂交晶体蛋白Cry1CAA和Cry1CCA对甜菜夜蛾的毒力比野生型晶体蛋白降低3~5倍,对棉铃虫的毒力比野生型晶体蛋白降低了190~260倍。研究结果表明,苏云金杆菌晶体蛋白不同结构域的相互作用会影响杂交晶体蛋白的表达、晶体形态和杀虫活性。 相似文献
8.
Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac 总被引:1,自引:0,他引:1
Sayyed AH Gatsi R Ibiza-Palacios MS Escriche B Wright DJ Crickmore N 《Applied and environmental microbiology》2005,71(11):6863-6869
A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies. 相似文献
9.
Coux F Vachon V Rang C Moozar K Masson L Royer M Bes M Rivest S Brousseau R Schwartz JL Laprade R Frutos R 《The Journal of biological chemistry》2001,276(38):35546-35551
The four salt bridges (Asp(222)-Arg(281), Arg(233)-Glu(288), Arg(234)-Glu(274), and Asp(242)-Arg(265)) linking domains I and II in Cry1Aa were abolished individually in alpha-helix 7 mutants D222A, R233A, R234A, and D242A. Two additional mutants targeting the fourth salt bridge (R265A) and the double mutant (D242A/R265A) were rapidly degraded during trypsin activation. Mutations were also introduced in the corresponding Cry1Ac salt bridge (D242E, D242K, D242N, and D242P), but only D242N and D242P could be produced. All toxins tested, except D242A, were shown by light-scattering experiments to permeabilize Manduca sexta larval midgut brush border membrane vesicles. The three active Cry1Aa mutants at pH 10.5, as well as D222A at pH 7.5, demonstrated a faster rate of pore formation than Cry1Aa, suggesting that increases in molecular flexibility due to the removal of a salt bridge facilitated toxin insertion into the membrane. However, all mutants were considerably less toxic to M. sexta larvae than to the respective parental toxins, suggesting that increased flexibility made the toxins more susceptible to proteolysis in the insect midgut. Interdomain salt bridges, especially the Asp(242)-Arg(265) bridge, therefore contribute greatly to the stability of the protein in the larval midgut, whereas their role in intrinsic pore-forming ability is relatively less important. 相似文献
10.
Development of targeted biological agents against agricultural insect pests is of prime importance for the elaboration and implementation of integrated pest management strategies that are environment-friendly, respectful of bio-diversity and safer to human health through reduced use of chemical pesticides. A major goal to understand how Bt toxins work is to elucidate the functions of their three domains. Domains II and III are involved in binding specificity and structural integrity, but the function of Domain I remains poorly understood. Using a Manduca sexta BBMV (brush border membrane vesicles) system, we analyzed its responses to Cry1Aa 15 single-point mutations with altered Domain I helix 4 residues. Light scattering assay showed that toxicity was almost lost in 3 mutants, and we observed significantly reduced toxicity in other 7 mutants. However, 5 mutants retained wild-type toxicity. Using computer software, we simulated the three-dimensional structures of helix 4. Both experimental and bioinform 相似文献
11.
The insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis are comprised of three structural domains. Domain I, a seven-helix bundle, is thought to penetrate the insect epithelial cell plasma membrane through a hairpin composed of alpha-helices 4 and 5, followed by the oligomerization of four hairpin monomers. The alpha-helix 4 has been proposed to line the lumen of the pore, whereas some residues in alpha-helix 5 have been shown to be responsible for oligomerization. Mutation of the Cry1Ac1 alpha-helix 4 amino acid Asn135 to Gln resulted in the loss of toxicity to Manduca sexta, yet binding was still observed. In this study, the equivalent mutation was made in the Cry1Ab5 toxin, and the properties of both wild-type and mutant toxin counterparts were analyzed. Both mutants appeared to bind to M. sexta membrane vesicles, but they were not able to form pores. The ability of both N135Q mutants to oligomerize was also disrupted, providing the first evidence that a residue in alpha-helix 4 can contribute to toxin oligomerization. 相似文献
12.
Yunjun Sun Qiang Zhao Dasheng Zheng Xuezhi Ding Jingfang Wang Quanfang Hu Zhiming Yuan Hyun-Woo Park Liqiu Xia 《Biotechnology letters》2014,36(1):105-111
Three structural domains of mosquitocidal Cry11Aa and Cry11Ba from Bacillus thuringiensis were exchanged to produce interdomain chimeras [BAA (11Ba/11Aa/11Aa), ABA (11Aa/11Ba/11Aa), AAB (11Aa/11Aa/11Ba), ABB (11Aa/11Ba/11Ba), BAB (11Ba/11Aa/11Ba), BBA (11Ba/11Ba/11Aa]. Chimeras BAB, BAA, BBA, and AAB formed inclusion bodies in the crystal-negative B. thuringiensis host and produced expected protein bands on SDS-PAGE gel. However, no inclusion body or target protein could be found for chimeras ABA and ABB. In bioassays using the fourth-instar larvae of Culex quinquefasciatus and Aedes aegypti, AAB had ~50 % lethal concentrations of 4.8 and 2.2 μg ml?1, respectively; however, the rest of chimeras were not toxic. This study thus helps to understand the domain-function relationships of the Cry11Aa and Cry11Ba toxins. The toxic chimera, AAB, might be a candidate for mosquito control as its amino acid sequence is different from the two parental toxins. 相似文献
13.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance. 相似文献
14.
Oestergaard J Ehlers RU Martínez-Ramírez AC Real MD 《Applied and environmental microbiology》2007,73(11):3623-3629
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa. 相似文献
15.
Pérez C Muñoz-Garay C Portugal LC Sánchez J Gill SS Soberón M Bravo A 《Cellular microbiology》2007,9(12):2931-2937
Bacillus thuringiensis ssp. israelensis (Bti) has been used worldwide for the control of dipteran insect pests. This bacterium produces several Cry and Cyt toxins that individually show activity against mosquitoes but together show synergistic effect. Previous work demonstrated that Cyt1Aa synergizes the toxic activity of Cry11Aa by functioning as a membrane-bound receptor. In the case of Cry toxins active against lepidopteran insects, receptor interaction triggers the formation of a pre-pore oligomer that is responsible for pore formation and toxicity. In this work we report that binding of Cry11Aa to Cyt1Aa facilitates the formation of a Cry11Aa pre-pore oligomeric structure that is capable of forming pores in membrane vesicles. Cry11Aa and Cyt1A point mutants affected in binding and in synergism had a correlative effect on the formation of Cry11Aa pre-pore oligomer and on pore-formation activity of Cry11Aa. These data further support that Cyt1Aa interacts with Cry11Aa and demonstrate the molecular mechanism by which Cyt1Aa synergizes or suppresses resistance to Cry11Aa, by providing a binding site for Cry11Aa that will result in an efficient formation of Cry11Aa pre-pore that inserts into membranes and forms ionic pores. 相似文献
16.
17.
Role of helix 3 in pore formation by the Bacillus thuringiensis insecticidal toxin Cry1Aa 总被引:1,自引:0,他引:1
Vachon V Préfontaine G Coux F Rang C Marceau L Masson L Brousseau R Frutos R Schwartz JL Laprade R 《Biochemistry》2002,41(19):6178-6184
Helix 3 of the Cry1Aa toxin from Bacillus thuringiensis possesses eight charged amino acids. These residues, with the exception of those involved in intramolecular salt bridges (E90, R93, E112, and R115), were mutated individually either to a neutral or to an oppositely charged amino acid. The mutated genes were expressed, and the resultant, trypsin-activated toxins were assessed for their toxicity to Manduca sexta larvae and their ability to permeabilize M. sexta larval midgut brush border membrane vesicles to KCl, sucrose, raffinose, potassium gluconate, and N-methyl-D-glucamine hydrochloride with a light-scattering assay based on osmotic swelling. Most mutants were considerably less toxic than Cry1Aa. Replacing either E101, E116, E118, or D120 by cysteine, glutamine, or lysine residues had only minor effects on the properties of the pores formed by the modified toxins. However, half of these mutants (E101C, E101Q, E101K, E116K, E118C, and D120K) had a significantly slower rate of pore formation than Cry1Aa. Mutations at R99 (R99C, R99E, and R99Y) resulted in an almost complete loss of pore-forming ability. These results are consistent with a model in which alpha-helix 3 plays an important role in the mechanism of pore formation without being directly involved in determining the properties of the pores. 相似文献
18.
Vié V Van Mau N Pomarède P Dance C Schwartz JL Laprade R Frutos R Rang C Masson L Heitz F Le Grimellec C 《The Journal of membrane biology》2001,180(3):195-203
After activation, Bacillus thuringiensis (Bt) insecticidal toxin forms pores in larval midgut epithelial cell membranes, leading to host death. Although the crystal
structure of the soluble form of Cry1Aa has been determined, the conformation of the pores and the mechanism of toxin interaction
with and insertion into membranes are still not clear. Here we show that Cry1Aa spontaneously inserts into lipid mono- and
bilayer membranes of appropriate compositions. Fourier Transform InfraRed spectroscopy (FTIR) indicates that insertion is
accompanied by conformational changes characterized mainly by an unfolding of the β-sheet domains. Moreover, Atomic Force
Microscopy (AFM) imaging strongly suggests that the pores are composed of four subunits surrounding a 1.5 nm diameter central
depression.
Received: 14 July 2000/Revised: 28 December 2000 相似文献
19.
Aim: To select a toxin combination for the management of maize stem borer (Chilo partellus) and to understand possible mechanism of synergism among Bacillus thuringiensis Cry1A toxins tested. Methods and Results: Three Cry1A toxins were over expressed in Escherichia coli strain JM105 and used for diet overlay insect bioassay against C. partellus neonate larvae, both alone and in combinations. Probit analysis revealed that the three Cry1A toxins tested have synergistic effect against C. partellus larvae. In vitro binding analysis of fluorescein isothiocyanate (FITC)‐labelled Cry1A toxins to midgut brush border membrane vesicle (BBMV) shows that increase in toxicity is directly correlated to an increase in binding of toxin mix. Conclusions: A high Cry1Ac to Cry1Ab ratio leads to an increase in efficacy of these toxins towards C. partellus larvae and this increase in toxicity comes from an increase in toxin binding. Significance and Impact of the Study: Use of Cry1Ab and Cry1Ac combination could be an effective approach to control C. partellus. Furthermore, we show it first time that possible reason behind increase in toxicity of synergistic Cry1A proteins is an increase in toxin binding. 相似文献
20.
L. Wang X.-F. Li J. Zhang J.-Z. Zhao Q.-J. Wu B. Xu Y.-J. Zhang 《Journal of Applied Entomology》2007,131(7):441-446
Abstract: To monitor the resistance of field populations of the diamondback moth Plutella xylostella in China to the insecticidal protein Cry1Ac, Cry1Ba and commercial formulation Bacillus thuringiensis var. kurstaki (Btk), six representative populations of the diamondback moth were collected from Shanghai, Shandong, Hubei, Hunan, Zhejiang and Guangdong provinces of China where crucifer crop plants are intensively planted. Bioassay results showed that the populations of the diamondback moth from different locations exhibited different levels of resistance, compared with a susceptible laboratory population. The Guangdong field population was 56.15- and 21.90-fold resistant to Cry1Ac and Btk, respectively. Shanghai, Hunan, Shandong and Zhejiang populations were 37.85-, 17.24-, 10.24- and 9.41-fold resistant to Cry1Ac, respectively, but were not resistant to Btk. The Hubei population did not show resistance to Cry1Ac and Btk. Almost all tested populations were susceptible to Cry1Ba, but the Guangdong population showed some tolerance to Cry1Ba with a LC50 of 0.69 μ g/ml which was 6.17-fold higher than that of the susceptible population. The results suggested that the complex resistance patterns of field populations of P. xylostella need to be considered for expression of Bt toxin genes in genetically-engineered crop plants and commercial formulations. 相似文献