首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turnip mosaic virus (TuMV) is the major virus infecting Brassica crops. A dominant gene, TuRB01, that confers extreme resistance to some isolates of TuMV on Brassica napus (oilseed rape), has been mapped genetically. The mapping employed a set of doubled-haploid lines extracted from a population used previously to develop a reference RFLP map of the B. napus genome. The positioning of TuRB01 on linkage group N6 of the B. napus A–genome indicated that the gene probably originated from Brassica rapa. Resistance phenotypes were confirmed by indirect plate-trapped antigen ELISA using a monoclonal antibody raised against TuMV. The specificity of TuRB01 was determined using a wide range of TuMV isolates, including representatives of the European and American/Taiwanese pathotyping systems. Some isolates of TuMV that did not normally infect B. napus plants possessing TuRB01 produced mutant viruses able to overcome the action of the resistance gene. TuRB01 is the first gene for host resistance to TuMV to be mapped in a Brassica crop. A second locus, TuRB02, that appeared to control the degree of susceptibility to the TuMV isolate CHN 1 in a quantitative manner, was identified on the C-genome linkage group N14. The mapping of other complementary genes and the selective combining of such genes, using marker-assisted breeding, will make durable resistance to TuMV a realisable breeding objective. Received: 14 December 1998 / Accepted: 10 April 1999  相似文献   

2.
A new source of resistance to the pathotype 4 isolate of Turnip mosaic virus (TuMV) CDN 1 has been identified in Brassica napus (oilseed rape). Analysis of segregation of resistance to TuMV isolate CDN 1 in a backcross generation following a cross between a resistant and a susceptible B. napus line showed that the resistance was dominant and monogenic. Molecular markers linked to this dominant resistance were identified using amplified fragment length polymorphism (AFLP) and microsatellite bulk segregant analysis. Bulks consisted of individuals from a BC1 population with the resistant or the susceptible phenotype following challenge with CDN 1. One AFLP and six microsatellite markers were associated with the resistance locus, named TuRB03, and these mapped to the same region on chromosome N6 as a previously mapped TuMV resistance gene TuRB01. Further testing of TuRB03 with other TuMV isolates showed that it was not effective against all pathotype 4 isolates. It was effective against some, but not all pathotype 3 isolates tested. It provided further resolution of TuMV pathotypes by sub-dividing pathotypes 3 and 4. TuRB03 also provides a new source of resistance for combining with other resistances in our attempts to generate durable resistance to this virus.  相似文献   

3.
Two isolates of the potyvirus Turnip mosaic virus (TuMV), UK 1 and CDN 1, differ both in their general symptoms on the susceptible propagation host Brassica juncea and in their ability to infect B. napus lines possessing a variety of dominant resistance genes. The isolate CDN 1 produces a more extreme mosaic in infected brassica leaves than UK 1 and is able to overcome the resistance genes TuRB01, TuRB04, and TuRB05. The resistance gene TuRB03, in the B. napus line 22S, is effective against CDN 1 but not UK 1. The nucleic acid sequences of the UK 1 and CDN 1 isolates were 90% identical. The C-terminal half of the P3 protein was identified as being responsible for the differences in symptoms in B. juncea. A single amino acid in the P3 protein was found to be the avirulence determinant for TuRB03. Previous work already has identified the P3 as an avirulence determinant for TuRB04. Our results increase the understanding of the basis of plant-virus recognition, show the importance of the potyviral P3 gene as a symptom determinant, and provide a role in planta for the poorly understood P3 protein in a normal infection cycle.  相似文献   

4.
To establish infection, plant viruses are evolutionarily empowered with the ability to spread intercellularly. Potyviruses represent the largest group of known plant-infecting RNA viruses, including many agriculturally important viruses. To better understand intercellular movement of potyviruses, we used turnip mosaic virus (TuMV) as a model and constructed a double-fluorescent (green and mCherry) protein-tagged TuMV infectious clone, which allows distinct observation of primary and secondary infected cells. We conducted a series of deletion and mutation analyses to characterize the role of TuMV coat protein (CP) in viral intercellular movement. TuMV CP has 288 amino acids and is composed of three domains: the N-terminus (amino acids 1–97), the core (amino acids 98–245), and the C-terminus (amino acids 246–288). We found that deletion of CP or its segments amino acids 51–199, amino acids 200–283, or amino acids 265–274 abolished the ability of TuMV to spread intercellularly but did not affect virus replication. Interestingly, deletion of amino acids 6–50 in the N-terminus domain resulted in the formation of aberrant virions but did not significantly compromise TuMV cell-to-cell and systemic movement. We identified the charged residues R178 and D222 within the core domain that are essential for virion formation and TuMV local and systemic transport in plants. Moreover, we found that trans-expression of the wild-type CP either by TuMV or through genetic transformation-based stable expression could not rescue the movement defect of CP mutants. Taken together these results suggest that TuMV CP is not essential for viral genome replication but is indispensable for viral intercellular transport where only the cis-expressed CP is functional.  相似文献   

5.
6.

Key message

A novel dominant resistance gene, TuRB07, was found to confer resistance to an isolate of TuMV strain C4 in B. rapa line VC1 and mapped on the top of chromosome A06.

Abstract

The inheritance of resistance to Turnip mosaic virus in Brassica rapa was investigated by crossing the resistant line, VC1 with the susceptible line, SR5, and genotyping and phenotyping diverse progenies derived from this cross. Both a doubled haploid population, VCS3M-DH, an F2 and two BC1 (F1 × VC1 and F1 × SR5) populations were created. Population tests revealed that the resistance to the TuMV C4 isolate in B. rapa is controlled by a single dominant gene. This resistance gene, TuRB07 was positioned on the top of linkage group A06 of the B. rapa genome through bulk segregation analysis and fine mapping recombinants in three doubled haploid- and one backcross population using microsatellite markers developed from BAC end sequences. Within the region between the two closely linked markers flanking TuRB07, H132A24-s1, and KS10960, in the Chiifu reference genome, two genes encoding nucleotide-binding site and leucine-rich repeat proteins with a coiled-coil motif (CC-NBS-LRR), Bra018862 and Bra018863 were identified as candidate resistance genes. The gene Bra018862 is truncated, but the gene Bra018863 has all the domains to function. Furthermore, the analysis of structural variation using resequencing data of VC1 and SR5 revealed that Bra018863 might be a functional gene because the gene has no structural variation in the resistant line VC1 when compared with Chiifu, whereas at the other NBS-LRR genes large deletions were identified in the resistant line. Allelic differences of Bra018863 were found between VC1 and SR5, supporting the notion that this gene is a putative candidate gene for the virus resistance.  相似文献   

7.
Previously we reported that the multifunctional cylindrical inclusion (CI) protein of turnip mosaic virus (TuMV) is targeted to endosomes through the interaction with the medium subunit of adaptor protein complex 2 (AP2β), which is essential for viral infection. Although several functionally important regions in the CI have been identified, little is known about the determinant(s) for endosomal trafficking. The CI protein contains seven conserved acidic dileucine motifs [(D/E)XXXL(L/I)] typical of endocytic sorting signals recognized by AP2β. Here, we selected five motifs for further study and identified that they all were located in the regions of CI interacting with AP2β. Coimmunoprecipitation assays revealed that alanine substitutions in the each of these acidic dileucine motifs decreased binding with AP2β. Moreover, these CI mutants also showed decreased accumulation of punctate bodies, which enter endocytic-tracking styryl-stained endosomes. The mutations were then introduced into a full-length infectious clone of TuMV, and each mutant had reduced viral replication and systemic infection. The data suggest that the acidic dileucine motifs in CI are indispensable for interacting with AP2β for efficient viral replication. This study provides new insights into the role of endocytic sorting motifs in the intracellular movement of viral proteins for replication.  相似文献   

8.
Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly.  相似文献   

9.
Niu QW  Lin SS  Reyes JL  Chen KC  Wu HW  Yeh SD  Chua NH 《Nature biotechnology》2006,24(11):1420-1428
Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69(159) and amiR-HC-Pro(159) are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP(159) targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69(159) and amiR-HC-Pro(159) from a dimeric pre-amiR-P69(159)/amiR-HC-Pro(159) transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 degrees C, a temperature that compromises small interfering RNA-mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.  相似文献   

10.
Oilseed rape (Brassica napus) lines transformedwith the coat protein (CP) gene of Turnip mosaic virus(TuMV) were used to determine the effectiveness of resistance to TuMV mediatedby CP RNA or coat protein. Lines with one, two, or more copies of transgeneswere produced. T2 and T3 lines containing the CP genewitha functional start codon synthesised coat protein and showed high, but variablelevels of resistance to TuMV (21–96% resistant plants per line). TheT1 and T2 progeny of all lines carrying the CP gene withamutated start codon so that RNA but not protein was expressed, were assusceptible to TuMV as controls. Thus, in these experiments we were able toinduce CP-mediated resistance, but not RNA-mediated resistance.  相似文献   

11.
12.
Presence of the dominant Tu gene in Lactuca sativa is sufficient to confer resistance to infection by turnip mosaic virus (TuMV). In order to obtain an immunological assay for the presence of TuMV in inoculated plants, the TuMV coat protein (CP) gene was cloned by amplification of a cDNA corresponding to the viral genome using degenerate primers designed from conserved potyvirus CP sequences. The TuMV CP was overexpressed in Escherichia coli, and polyclonal antibodies were produced. To locate Tu on the L. sativa genetic map, F3 families from a cross between cvs Cobbham Green (resistant to TuMV) and Calmar (susceptible) were genotyped for Tu. Families known to be recombinant in the region containing Tu were infected with TuMV and tested by the indirect enzyme-linked immunosorbent assay (ELISA) using the anti-CP serum. This assay placed Tu between two random amplified polymorphic DNA (RAPD) markers and 3.2 cM from Dm5/8 (which confers resistance to Bremia lactucae). Also, bulked segregant analysis was used to screen for additional RAPD markers tightly linked to the Tu locus. Five new markers linked to Tu were identified in this region, and their location on the genetic map was determined using informative recombinants in the region. Six markers were identified as being linked within 2.5 cM of Tu.  相似文献   

13.
The pepper L gene conditions the plant's resistance to Tobamovirus spp. Alleles L(1), L(2), L(3), and L(4) confer a broadening spectra of resistance to different virus pathotypes. In this study, we report the genetic basis for the hierarchical interaction between L genes and Tobamovirus pathotypes. We cloned L(3) using map-based methods, and L(1), L(1a), L(1c), L(2), L(2b), and L(4) using a homology-based method. L gene alleles encode coiled-coil, nucleotide-binding, leucine-rich repeat (LRR)-type resistance proteins with the ability to induce resistance response to the viral coat protein (CP) avirulence effectors by themselves. Their different recognition spectra in original pepper species were reproduced in an Agrobacterium tumefaciens-mediated transient expression system in Nicotiana benthamiana. Chimera analysis with L(1), which showed the narrowest recognition spectrum, indicates that the broader recognition spectra conferred by L(2), L(2b), L(3), and L(4) require different subregions of the LRR domain. We identified a critical amino acid residue for the determination of recognition spectra but other regions also influenced the L genes' resistance spectra. The results suggest that the hierarchical interactions between L genes and Tobamovirus spp. are determined by the interaction of multiple subregions of the LRR domain of L proteins with different viral CP themselves or some protein complexes including them.  相似文献   

14.
Experimental data are provided for the presence of a plant protein that interacts with the capsid protein (CP) of turnip mosaic potyvirus (TuMV). The receptor-like protein was identified by exploiting the molecular mimicry potential of anti-idiotypic antibodies. A single-chain Fv molecule derived from the monoclonal antibody 7A (Mab-7A), which recognizes the CP of TuMV, was produced in Escherichia coli and the recombinant protein was used to raise rabbit antibodies. The immune serum reacted with Mab-7A but not with a monoclonal antibody of the same isotype, indicating that anti-idiotypic antibodies were produced. These anti-idiotypic antibodies recognized a 37 kDa protein from Lactuca sativa. Complex formation between the anti-idiotypic antibodies and the plant protein was inhibited by the CP of TuMV which indicates that the plant protein interacts with the viral protein. The 37 kDa protein was localized in chloroplasts and was detected in other plant species.  相似文献   

15.
Viral factors as well as host ones play major roles in the disease progression of human immunodeficiency virus type 1 (HIV-1) infection. We have examined cytotoxic T-lymphocyte activity and HIV-1 DNA PCR results of 312 high-risk seronegative drug users in northern Thailand and identified four seronegative cases positive for both assays. Furthermore, we have identified a synonymous mutation in nucleotide position 75 of the gag p17 gene (A426G) of HIV-1 that belongs to the CRF01_AE virus circulating in Thailand. The replication-competent HIV-1 clone containing the A426G mutation demonstrated a dramatic reduction of virion production and perturbation of viral morphogenesis without affecting viral protein synthesis in cells.  相似文献   

16.
Fifty transgenic lines expressing the tobacco vein mottling virus (TVMV) coat protein (CP) gene in five genetic backgrounds were evaluated under field conditions for response to mechanic inoculation with TVMV, tobacco etch virus (TEV) and potato virus Y (PVY). TVMV CP transgenic lines conferred resistance to TVMV, TEV and PVY under field conditions. Combining two strategies, coat protein-mediated resistance (CPMR) coupled with an endogenous resistance gene (Virgin A Mutant, VAM) significantly extended the range and magnitude of virus resistance and provided a potential valuable new source of protection against potyviruses. CP transgenic lines lacking the VAM gene had high resistance to TEV, medium resistance to PVY, and a recovery phenotype to TVMV. A series of hybrids involving transgenic lines were generated and tested under field conditions for response to virus inoculation. One copy of TVMV-CP gene presented in lines homozygous for the VAM gene provided effective resistance to all three potyviruses. These studies also suggested that selection of a suitable recipient genotype was critical and that field evaluation was necessary in order to select elite resistant transgenic lines. Engineering viral CP genes into genotypes possessing some level of virus resistance could be critical to achieve an effective level of resistance.  相似文献   

17.
Lim SH  Ko MK  Lee SJ  La YJ  Kim BD 《Molecules and cells》1999,9(6):603-608
The nucleotide sequence of the 3'-terminal region of the Korean isolate of cymbidium mosaic virus (CyMV-Ca) from a naturally infected cattleya was determined. The sequence contains an open reading frame (ORF) coding for the viral coat protein (CP) at the 3'-end and three other ORFs (triple gene block or movement protein) of CyMV. The CP gene encodes a polypeptide chain of 220 amino acids with a molecular mass of 23,760 Da. The deduced CP sequence showed a strong homology with those of two CyMVs reported. A construct of the CyMV-Ca CP gene in the antisense orientation in the plant expression vector pMBP1 was transferred via Agrobacterium tumefaciens-mediated transformation into Nicotiana occidentalis which is a propagation host of CyMV. The T1 progeny of the transgenic plants were inoculated with CyMV and found to be highly resistant to CyMV infection.  相似文献   

18.
Transgenic lines of subterranean clover were constructed that contained three different Bean yellow mosaic virus (BYMV) coat protein (CP) gene constructs; full-length CP, the core region of the CP, and full-length CP plus the 3′ untranslated region of the viral genome. Transgenic plants containing the full-length and core CP gene constructs showed high and moderate levels of BYMV resistance. Resistance was measured as a lack or amelioration of viral disease symptoms, which was correlated with a reduction in virus levels and yield loss. A range of different resistance phenotypes was observed. They included reduced infection rates, delay and reduction in local lesion development, and delay and reduction in severity of systemic symptom development. Resistance levels were not correlated with transgene mRNA levels and no transgene-encoded protein was detected in any of the transgenic lines. This is the first example of genetically engineered virus resistance in a clover.  相似文献   

19.
20.
Two different isolates of Turnip mosaic virus (TuMV: UK 1 and JPN 1) belonging to different virus strains were tested on three different Brassica species, namely turnip (Brassica rapa L.), Indian mustard (Brassica juncea L.) and Ethiopian mustard (Brassica carinata A. Braun). Although all three hosts were readily infected by isolate UK 1, isolate JPN 1 was able to establish a visible systemic infection only in the first two. Ethiopian mustard plants showed no local or systemic symptoms, and no virus antigens could be detected by enzyme‐linked immunosorbent assay (ELISA). Thus, this species looks like a non‐host for JPN 1, an apparent situation of non‐host resistance (NHR). Through an experimental approach involving chimeric viruses made by gene interchange between two infectious clones of both virus isolates, the genomic region encoding the C‐terminal domain of viral protein P3 was found to bear the resistance determinant, excluding any involvement of the viral fusion proteins P3N‐PIPO and P3N‐ALT in the resistance. A further determinant refinement identified two adjacent positions (1099 and 1100 of the viral polyprotein) as the main determinants of resistance. Green fluorescent protein (GFP)‐tagged viruses showed that the resistance of Ethiopian mustard to isolate JPN 1 is only apparent, as virus‐induced fluorescence could be found in discrete areas of both inoculated and non‐inoculated leaves. In comparison with other plant–virus combinations of extreme resistance, we propose that Ethiopian mustard shows an apparent NHR to TuMV JPN 1, but not complete immunity or extreme resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号