首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mammary involution after cessation of milk removal is associated with extensive loss of secretory epithelial cells. Ultrastructural changes and the appearance of oligonucleosomal DNA laddering in ethidium bromide-stained gels indicates that cell loss during involution occurs by apoptosis. In this study, a technique for nick end-labelling of genomic DNA with radiolabelled deoxynucleotide has been used to monitor the induction of programmed cell death in mice after litter removal at peak lactation. This technique proved more sensitive than conventional ethidium bromide staining, and results suggested that apoptosis was induced rapidly by milk stasis, before extensive tissue re-modelling had begun. Oligonucleosomal DNA laddering on agarose gels was detected within 24 h of milk stasis, and increased progressively for at least 4 days. Nick-end labelling also detected laddering before litter removal, suggesting that programmed cell death is a normal feature of the lactating tissue. The DNA end-labelling technique was also adapted for in situ visualisation of apoptotic cells in tissue sections. By this criterion, apoptotic cells were identified in both the secretory epithelium lining the alveoli of the gland and, increasingly with prolonged milk stasis, amongst those sloughed into the alveolar lumen. The results demonstrate the utility of these techniques for study of mammary cell death and suggest that, whilst apoptosis is rapidly induced by milk stasis, it is also a normal physiological event in the lactating mammary gland.  相似文献   

4.
Growth factors are known to regulate ovarian function. In the present study, effects of these growth factors, TGF-α, TGF-β, and activin-A were tested on spontaneous porcine oocyte maturation. Cumulus-oocyte complexes (COC) were cultured in the presence of TGF-α, TGF-β, and activin-A for 48 hr. Stages of meiotic maturation were assessed by staining with acetic orcein. Among these factors, only TGF-α significantly enhanced the maturation rate, whereas TGF-β suppressed the spontaneous maturation rate. The site of action of TGF-α on COC and the interaction between TGF-α and EGF receptor was also examined. Denuded oocytes, alone or in coculture with cumulus cells, were cultured in the presence of TGF-α for 48 hr. TGF-α did not have any significant effect on denuded oocyte maturation. Heptanol was employed to investigate the role of gap junctions on TGF-α-induced oocyte maturation in COC. Although heptanol did not have any significant effect in the control medium, heptanol reversed the stimulatory effect of TGF-α on porcine oocyte maturation. TGF-α was able to displace 125I-EGF binding on COC. In conclusion, TGF-α enhances the spontaneous maturation of porcine oocytes by generating positive signal(s) in cumulus cells that are transferred to the oocyte via gap junctions. TGF-α shares the same receptor with EGF on porcine COC. TGF-β, in contrast, inhibits porcine oocyte maturation. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The effect of growth factors on regulating gene expression in the preimplantation mouse embryo was examined, since results of previous experiments revealed a stimulatory effect of exogenously-added growth factors on preimplantation development in vitro. Treatment of early cavitating blastocysts with either 250 pM TGF-α or TGF-β results in changes in the pattern of total protein synthesis as assessed by high-resolution two-dimensional gel electrophoresis. In some cases, the synthesis of a particular polypeptide is either up- or downregulated by each growth factor, whereas in other instances the synthesis of a polypeptide is modulated by one but not the other growth factor. Use of the mRNA differential display method permitted the identification of genes whose expression is either up- or downregulated by these growth factors. Treatment of mouse blastocysts with either TGF-α or TGF-β results in the increased expression of the b subunit of the F0 ATPase. TGF-β also stimulates the expression of the DNA polymerase α. TGF-α treatment results in the increase in expression of a gene homologous to the human HEPG2 cDNA, as well as in a decrease in expression of fibronectin. © 1995 Wiley-Liss, Inc.  相似文献   

6.
TGF-beta1 is an apoptogenic agent for mammary epithelial cells (MEC). The molecular mechanism of the TGF-beta1-induced apoptosis remains, however, obscure. In the present study we used laser scanning cytometry, confocal microscopy and immunogold electron microscopy to analyze the expression, aggregation and co-localization of caspase-8, Bid, Bax and VDAC-1. These proteins are regarded as the most important factors involved in the regulatory phase of TGF-beta1-induced apoptosis. Apoptosis in HC11 mouse MEC manifested with a simultaneous increase in expression and subcellular aggregation of caspase-8, Bid, Bax and VDAC-1. Confocal microscopy revealed a strong pattern of co-localization of examined proteins during both early and late apoptosis. Experiments with double- and triple-staining immunoelectron microscopy showed a co-localization of Bax/Bid, caspase-8/Bax/Bid, and Bax/VDAC-1, on the membranes of mitochondria, Golgi apparatus, rough endoplasmic reticulum, nuclear envelope, nuclear pore, and within the nucleus. In conclusion, the observed pattern of changes in aggregation and subcellular localization of caspase-8, Bid, Bax and VDAC-1 during TGF-beta1-induced apoptosis in HC11 mouse MEC suggests an interaction between these proteins and formation of multimeric complexes on organellar membranes, thus controlling their permeability for intracellular mediators of apoptosis.  相似文献   

7.
8.
9.
TNF-alpha, generated during the systemic inflammatory response, triggers a wide range of biological activities that mediate the neurologic manifestations associated with cancer and infection. Since this cytokine regulates ion channels in vitro (especially Kv1.3 and Kir2.1), we aimed to study Kv1.3 and Kir2.1 expression in brain in response to in vivo systemic inflammation. Cancer-induced cachexia and LPS administration increased plasma TNF-alpha. Kv1.3 and Kir2.1 expression was impaired in brain during cancer cachexia. However, LPS treatment induced Kv1.3 and downregulated Kir2.1 expression, and TNF-alpha administration mimicked these results. Experiments using TNF-alpha double receptor knockout mice demonstrated that the systemic inflammatory response mediates K(+) channel regulation in brain via TNF-alpha-dependent and -independent redundant pathways. In summary, distinct neurological alterations associated with systemic inflammation may result from the interaction of various cytokine pathways tuning ion channel expression in response to neurophysiological and neuroimmunological processes.  相似文献   

10.
    
The relationships between transforming growth factor-β (TGF-β) and cancer are varied and complex. The paradigm that is emerging from the experimental evidence accumulated over the past decade or so is that TGF-β can play two different and opposite roles with respect to the process of malignant progression. During early stages of carcinogenesis, TGF-β acts predominantly as a potent tumor suppressor and may mediate the actions of chemopreventive agents such as retinoids and nonsteroidal anti-estrogens. However, at some point during the development and progression of malignant neoplasms, bioactive TGF-βs make their appearance in the tumor microenvironment and the tumor cells escape from TGF-β-dependent growth arrest. In many cases, this resistance to TGF-β is the consequence of loss or mutational inactivation of the genes that encode signaling intermediates. These include the types I and II TGF-β receptors, as well as receptor-associated and common-mediator Smads. The stage of tumor development or progression at which TGF-β-resistant clones come to dominate the tumor cell population in different types of neoplasm remains to be defined. The phenotypic switch from TGF-β-sensitivity to TGF-β-resistance that occurs during carcinogenesis has several important implications for cancer prevention and treatment.  相似文献   

11.
A major cause of morbidity and mortality in beta-thalassemic patients is infections, assumed to be the result of immunological changes. To determine the possible defect, we investigated the cytokine productions by blood cells of beta-thalassemic patients using in-vivo and in-vitro methods. Heparinized blood samples collected aseptically from 22 beta-thalassemic children aged 10-12yrs (half of them were splenectomized). Samples from 10 healthy children served as control group. Part of samples was used for evaluation of plasma IL-2, IL-10 and TGF-beta1. Other part were stimulated with a mixture of LPS and PHA (1 and 10 microg/ml final concentration), for different time period (4, 24, 48 and 72h). Results showed circulating TGF-beta1 of splenectomized patients was significantly higher (p<0.01) than the control group. In-vitro results showed IL-2 production of patients' groups were significantly (p<0.01) lower than corresponding value obtained for the control group. In addition, IL-10 production by splenectomized group were less than other two group (p<0.01), while their TGF-beta1 were higher (p<0.001) at all time points treated. In conclusion, multi-transfusions could be responsible for a change in the subset of circulating lymphocytes that could contribute to a state of partial immune deficiency in beta-thalassemic patients, which is more prominence among the splenectomized patient.  相似文献   

12.
Using a culture system of bone marrow progenitor cells with GM-CSF and TGF-β1, a study was performed to analyze the effect of TGF-β1 on the development of dendritic cells (DC) and to elucidate the regulatory role of macrophages co-developing with dendritic cells. The results demonstrate that DC generated in the presence of TGF-β1 were immature with respect to the expression of CD86, nonspecific esterase activity and cell shape. Such inhibitory effects of TGF-β1 were dependent on FcR+ macrophages, which were depleted by panning. TGF-β1 did not appear to inhibit the commitment of progenitor cells to the DC lineage. In addition, TGF-β1 also acted directly on the intermediate stage of DC to prevent their over-maturation, which results in a preferential decrease in MHC class II, but not in CD86, in the presence of TNF-α. FcR+ suppressive macrophages were also shown to facilitate DC maturation when stimulated via FcR-mediated signals even in the presence of TGF-β1. These results indicate that TGF-β1 indirectly and directly regulate the development of DC and that co-developing macrophages have a regulatory role in DC maturation.  相似文献   

13.
The history of transforming growth factor-beta (TGF-β) as a bifunctional agent in the immune system is briefly described. The importance of cellular context in understanding the role of TGF-β in regulating immune response is emphasized.  相似文献   

14.
15.
Mu Z  Yang Z  Yu D  Zhao Z  Munger JS 《Mechanisms of development》2008,125(5-6):508-516
Gene deletion experiments have shown that the three TGFβ isoforms regulate distinct developmental processes. Recent work by our group and others showed that the integrins αvβ6 and αvβ8 activate latent forms of TGFβ1 and TGFβ3. This raises the possibility that TGFβ1 and TGFβ3 act redundantly in developmental processes where both isoforms are expressed and activation is by integrins. To investigate this issue, we generated mice with defective integrin-mediated TGFβ1 activation (Tgfb1RGE/RGE) that were also homozygous for a null mutation in the TGFβ3 gene. Tgfb1RGE/RGE; Tgfb3−/− mice have severely perturbed development of the brain vasculature that is highly similar to that in mice lacking αvβ8. Some Tgfb1RGE/RGE; Tgfb3+/− and Tgfb1RGE/RGE; Tgfb3+/+ mice have milder, background-dependent versions of the phenotype. In addition, we found that Tgfb3 gene status influences embryonic lethality due to TGFβ1 deficiency after limited backcrossing to the BALB/c background. Conversely, Tgfb1 gene status modifies the extent of palate fusion in Tgfb3−/− mice after limited backcrossing to the ICR background. Our results are consistent with a functional connection between TGFβ1 and TGFβ3 during development based on a shared mechanism of activation.  相似文献   

16.
17.
Since it was first described as having the ability to inhibit macrophage activation, transforming growth factor-beta (TGF-β) has been analyzed for its role in regulating immune responses to a variety of pathogens, including viruses, bacteria, yeast, and protozoa. Most of the studies have involved organisms that infect macrophages, and this discussion will attempt to highlight these findings. Perhaps the most work has been performed with protozoan pathogens, including Trypanosoma cruzi and a variety of Leishmania species, so the discussion will begin with these organisms. Other studies have focused on mycobacteria and viruses, including human immunodeficiency virus, so these areas will also be emphasized in the discussion. For the most part, investigators have reported that TGF-β has, as expected, a negative influence on host responses and a beneficial effect on the survival and growth of intracellular pathogens. However, other studies have found that TGF-β may have a positive or beneficial effect in some models of infection. This review will attempt to highlight studies and conclusions on the roles of TGF-β in infection.  相似文献   

18.
We have previously demonstrated that newly synthesized proteins are secreted into the mouse blastocoel [Dardik and Schultz (1991): Biol Reprod 45:328–333]. In the present study we examine the effect of transforming growth factor-α (TGF-α) on these proteins. We observe that TGF-α stimulates secretion of these newly synthesized proteins into the blastocoel and apical medium, which faces the zona pellucida, by about 65%. Although one-dimensional gel electrophoretic analysis does not reveal any marked differences in the patterns of newly synthesized proteins secreted into the blastocoel in response to TGF-α, zymography reveals a marked stimulation in the secretion of several gelatinases into the blastocoel and apical medium. These results suggest additional functions for TGF-α in mouse preimplantation development. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The transforming growth factor-betas (TGF-βs) are synthesized as precursor proteins that are modified intracellularly prior to secretion. One of the most relevant intracellular modifications is the cleavage of the C-terminal pro-region from the N-terminal portion of the protein. The C-terminal pro-region is referred to as the latency-associated peptide (LAP) while the N-terminal region is called the mature TGF-β or active TGF-β. However, with some exceptions the LAP noncovalently associates with the mature TGF-β prior to secretion. When the mature TGF-β is associated with the LAP it is called L-TGF-β and cannot interact with its receptor and has no biological effect. The TGF-βs and their receptors are very ubiquitously expressed, suggesting that the regulation of TGF-β activity is likely to be complex and multifactorial. However, one of the most important means of controlling the biological effects of TGF-β is the regulation of converting L-TGF-β to active TGF-β. The current literature supports two major mechanisms of activation of L-TGF-β and suggests that the mechanism of activation of L-TGF-β may be varied and context-dependent. For TGF-β to become biologically active the LAP has to be either released from its associations with L-TGF-β or undergo conformational change such that the LAP is not released from the L-TGF-β complex but exposes the TGF-β receptor binding site. Since TGF-β has been associated with the pathogenesis of numerous diseases, the various mechanisms of activation of L-TGF-β in context offer the possibility of controlling TGF-β activity localized to the organ of involvement and to a more specific disease process.  相似文献   

20.
    
The role of TSP-1 in tumour growth and angiogenesis remains controversial, with both stimulatory and inhibitory roles proposed. The effects of TSP-1 on the migration of endothelial cells, fibroblast and oral tumour cell lines were examined using the transmembrane assay. TSP-1 induced a bi-phasic effect on human and bovine endothelial cells: stimulation at low concentrations (0.1–10 µg/ml) and inhibition at high concentrations (25–100 µg/ml). FGF-2-stimulated endothelial cell migration was either further stimulated or inhibited by TSP-1, following the same bi-phasic dose response as in the absence of FGF-2. In contrast, TSP-1 stimulated the migration of human fibroblast and oral tumour cells in a dose dependent manner; a plateau was reached with 5–25 µg/ml and no inhibitory effect was observed. These effects were partly neutralised by antibodies to αvβ3 integrin. TGF-β1 (0.1–200ng/ml tested) mimicked the effects of TSP-1 on cell migration. Function-neutralising antibodies to TGF-β1 completely abolished both the stimulatory and inhibitory effects of TSP-1 on endothelial migration, but had no effect on TSP-1-stimulated migration of fibroblast and oral tumour cells. The effects of TGF-β1 were not affected by antibodies to TSP-1. These results indicate that the effects of TSP-1 on endothelial cell migration are mediated by TGF-β1, whereas the effects on fibroblast and tumour cell migration are TGF-β1-independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号