首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effect of the muscle relaxant dantrolene on isolated sarcoplasmic reticulum was studied in control and malignant-hyperpyrexia-susceptible Landrace pigs. The membranes prepared from both sources showed similar Ca2+-dependent ATPase activities, had comparable phospholipid/protein ratios, and their sodium dodecyl sulphate/polyacrylamide-gel patterns were indistinguishable. Membranes from both sources appeared to bind similar amounts of dantrolene. The drug did not stimulate Ca2+-dependent ATPase activity in preparations from either source. The rates of Ca2+ exchange and Ca2+ efflux appeared to be similar in sarcoplasmic reticulum of control and malignant-hyperpyrexia-susceptible pigs. Dantrolene did not affect either the rates or the amount of Ca2+ lost from the vesicles. These results suggest that dantrolene does not directly affect the movement of Ca2+ across the sarcoplasmic-reticulum membrane.  相似文献   

2.
The kinetics and extent of the fluorescence change induced by Ca2+ interaction with the Ca2+-ATPase from sarcoplasmic reticulum have been compared by stopped flow fluorimetry for three preparations: sarcoplasmic reticulum; purified ATPase in membrane vesicles; and solubilized, delipidated ATPase. The kinetics of Ca2+ release and binding for both purified preparations could be described by a single exponential as has been observed for sarcoplasmic reticulum. The rate and extent of the fluorescence change for the solubilized and membrane-associated preparations are shown to be quite similar to those of the sarcoplasmic reticulum. From these results, it is concluded that all of the Ca2+-induced fluoescence change in sarcoplasmic reticulum originates from the Ca2+-ATPase. In addition, since the change in fluorescence is probably result of a conformational change in the ATPase during the Ca2+ pumping cycle, the results provide additional evidence that monomeric Ca2+-ATPase may be capable of Ca2+ transport since the delipidated preparation is monomeric under the conditions used for these experiments. Finally, it is concluded that phospholipid bilayer is not essential for this conformational change.  相似文献   

3.
Antibody was raised in chickens against purified sarcoplasmic-reticulum Ca2+-activated ATPase (Ca2+-ATPase). The immunological relationship between the Ca2+-ATPase of fast-muscle and slow-muscle sarcoplasmic reticulum was investigated by a one-step and a two-step competitive enzyme-linked immunosorbent assay (ELISA). The results show marked antigenic differences between the membrane-bound Ca2+-ATPase of the sarcoplasmic-reticulum vesicles from fast muscle and slow muscle, beside differences in the membrane content of ATPase protein.  相似文献   

4.
The Ca2+-ATPase activity of sarcoplasmic reticulum is relatively low (less than 2 I.U.) in vesicles where enzyme activity is geared to calcium accumulation. Modulation of membrane fluidity by enriching the membrane with cholesterol has no significant effect on enzyme activity. Collapsing the Ca2+ gradient with the calcium ionophore, A23187, unmasks the inhibitory effect of membrane cholesterol on enzyme activity.  相似文献   

5.
Isolated sarcoplasmic reticulum vesicles from rabbit white muscle were separated into a light (15--20% of total microsomes) and a heavy (80--85%) fraction by density gradient centifugation. The ultrastructure, chemical composition, enzymic activities and localization of membrane components in the vesicles of both fractions were investigated. From the following results it was concluded that both fractions are derived from the membranes of the sarcoplasmic reticulum system of the muscle: (i) The protein pattern of both fractions is essentially the same, except for different ratios of acidic, Ca2+-binding proteins. (ii) The 105000 dalton protein of the light fraction cross-reacts immunologically with the Ca2+-dependent ATPase of the heavy fraction. (iii) Ca2+-dependent ATPase, although of different specific activity, is found in both fractions. After rendering the vesicles leaky, specific activities in both fractions reach the same value. The light fraction was found to consist of "inside-out" vesicles by the following criteria: (i) No Ca2+ accumulation can be measured and the Ca2+-dependent ATPase activity is low and variable. (ii) The rate of trypsin digestion is lower and, compared to the heavy microsomes, a different ratio of degradation products is obtained. (iii) The sarcoplasmic reticulum membrane has a highly asymmetrical lipid distribution. This distribution of aminophospholipids is opposite to that in vesicles of heavy fraction. The light sarcoplasmic reticulum fraction has a higher phospholipid to protein ratio than the heavy one. This is consistent with the possibility that the two fractions derive from different parts of the sarcoplasmic reticulum system.  相似文献   

6.
Steroid hormones are lipophilic suggesting they intercalate into the bilayer of target cell plasma membranes, potentially altering the fluidity and function of the membrane. The present study measured the effects of steroidal exposure on both phospholipid fluidity and integral protein mobility. Studies were performed on the effects of a variety of steroids on phosphatidylcholine liposomes, synaptosomal plasma membranes and sarcoplasmic reticulum membranes. Progesterone decreased the lipid fluidity, whereas testosterone had no effect on lipid movement. The estrogen, 17 beta-estradiol, an aromatised metabolite of testosterone, increased lipid mobility. In each case, the steroid action was concentration-dependent. The steroids all increased the activity of the Ca2+ ATPase of SR membrane, in keeping with their effects on this enzyme's aggregation state. The results suggest that, although lipid fluidity is a factor influencing protein activity, their mobility within the bilayer is the primary determinant of enzyme activity in the membrane for most proteins.  相似文献   

7.
Vesicular fragments of sarcoplasmic reticulum were isolated from pectoralis muscle of normal and dystrophic chicken. Purification of both preparations was equally satisfactory, as shown by a prominent ATPase band in electrophoresis gels. Measurements of ATPase phosphorylation, Ca2+ transport and Pi cleavage by rapid quench methods revealed a lower specific activity of the dystrophic vesicles with respect to all of these functions. On the other hand, Ca2+-independent ATPase activity was found to be increased in dystrophic vesicles. It is suggested that a fraction of ATPase units of dystrophic sarcoplasmic reticulum is not activated by Ca2+, owing to an altered protein assembly within the membrane bilayer. In fact, when the membrane structure is perturbed by detergents normal and dystropic preparations acquire an equally high Ca2+-dependent ATPase.  相似文献   

8.
1. Microsomes were isolated from rabbit fast-twitch and slow-twitch muscle and were separated into heavy and light fractions by centrifugation in a linear (0.3–2m) sucrose density gradient. The membrane origin of microsomal vesicles was investigated by studying biochemical markers of the sarcoplasmic-reticulum membranes and of surface and T-tubular membranes, as well as their freeze-fracture properties. 2. Polyacrylamide-gel electrophoresis showed differences in the Ca2+-dependent ATPase/calsequestrin ratio between heavy and light fractions, which were apparently consistent with their respective origin from cisternal and longitudinal sarcoplasmic reticulum, as well as unrelated differences, such as peptides specific to slow-muscle microsomes (mol.wts. 76000, 60000, 56000 and 45000). 3. Freeze-fracture electron microscopy of muscle microsomes demonstrated that vesicles truly derived from the sarcoplasmic reticulum, with an average density of 9nm particles on the concave face of about 3000/μm2 for both fast and slow muscle, were admixed with vesicles with particle densities below 1000/μm2. 4. As determined in the light fractions, the sarcoplasmic-reticulum vesicles accounted for 84% and 57% of the total number of microsomal vesicles, for fast and slow muscle respectively. These values agreed closely with the percentage values of Ca2+-dependent ATPase protein obtained by gel densitometry. 5. The T-tubular origin of vesicles with a smooth concave fracture face in slow-muscle microsomes is supported by their relative high content in total phospholipid and cholesterol, compared with the microsomes of fast muscle, and by other correlative data, such as the presence of (Na++K+)-dependent ATPase activity and of low amounts of Na+-dependent membrane phosphorylation. 6. Among intrinsic sarcoplasmic-reticulum membrane proteins, a proteolipid of mol.wt. 12000 is shown to be identical in the microsomes of both fast and slow muscle and the Ca2+-dependent ATPase to be antigenically and catalytically different, though electrophoretically homogeneous. 7. Basal Mg2+-activated ATPase activity was found to be high in light microsomes from slow muscle, but its identification with an enzyme different from the Ca2+-dependent ATPase is still not conclusive. 8. Enzyme proteins that are suggested to be specific to slow-muscle longitudinal sarcoplasmic reticulum are the flavoprotėin NADH:cytochrome b5 reductase (mol.wt. 32000), cytochrome b5 (mol.wt. 17000) and the stearoyl-CoA desaturase, though essentially by criteria of plausibility.  相似文献   

9.
The passive Ca2+ permeability of fragmented sarcoplasmic reticulum membranes is 10(4) to 10(61 times greater than that of liposomes prepared from natural or synthetic phospholipids. The contribution of membrane proteins to the Ca2+ permeability was studied by incorporating the purified [Ca2+ + Mg2+]-activated ATPase into bilayer membranes prepared from different phospholipids. The incorporation of the Ca2+ transport ATPase into the lipid phase increased its Ca2+ permeability to levels approaching that of sarcoplasmic reticulum membranes. The permeability change may arise from a reordering of the structure of the lipid phase in the environment of the protein or could represent a specific property of the protein itself. The calcium-binding protein of sarcoplasmic reticulum did not produce a similar effect. The increased rate of Ca2+ release from reconstituted ATPase vesicles is not a carrier-mediated process as indicated by the linear dependence of the Ca2+ efflux upon the gradient of Ca2+ concentration and by the absence of competition and countertransport between Ca2+ and other divalent metal ions. The increased Ca2+ permeability upon incorporation of the transport ATPase into the lipid phase is accompanied by similar increase in the permeability of the vesicles for sucrose, Na+, choline, and SO42- indicating that the transport ATPase does not act as a specific Ca2+ channel. Native sarcoplasmic reticulum membranes are asymmetric structures and the 75-A particles seen by freeze-etch electron microscopy are located primarily in the outer fracture face. In reconstituted ATPase vesicles the distribution of the particles between the two fracture faces is even, indicating that complete structural reconstitution was not achieved. The Ca2+ transport activity of reconstituted ATPase vesicles is also much less than that of fragmented sarcoplasmic reticulum. The density of the 40-A surface particles visible after negative staining of native or reconstituted vesicles is greater than that of the intramembranous particles and the relationship between these two structures remains to be established.  相似文献   

10.
An active Ca2+-stimulated, Mg2+-dependent adenosinetriphosphatase (Ca2+-ATPase) isolated from rabbit skeletal muscle sarcoplasmic reticulum membranes has been incorporated into dilauroyl-, dimyristoyl-, dipentadecanoyl-, dipalmitoyl-, and palmitoyloleoylphosphatidylcholine bilayers by using a newly developed lipid-substitution procedure that replaces greater than 99% of the endogenous lipid. Freeze--fracture electron microscopy showed membranous vesicles of homogeneous size with symmetrically disposed fracture-face particles. Diphenylhexatriene fluorescence anisotropy was used to define the recombinant membrane phase behavior and revealed more than one transition in the membranes. Enzymatic analysis indicated that saturated phospholipid acyl chains inhibited both overall ATPase activity and Ca2+-dependent phosphoenzyme formation below the main lipid phase transition temperature (Tm) of the lipid-replaced membranes. At temperatures above Tm, ATPase activity but not phosphoenzyme formation was critically dependent on acyl chain length and thus bilayer thickness. No ATPase activity was observed in dilauroylphosphatidylcholine bilayers. Use of the nonionic detergent dodecyloctaoxyethylene glycol monoether demonstrated that the absence of activity was not due to irreversible inactivation of the enzyme. Increased bilayer thickness resulted in increased levels of activity. An additional 2-fold rise in activity was observed when one of the saturated fatty acids in dipalmitoylphosphatidylcholine was replaced by oleic acid, whose acyl chain has a fully extended length comparable to that of palmitic acid. These results indicate that the Ca2+-ATPase requires for optimal function a "fluid" membrane with a minimal bilayer thickness and containing unsaturated phospholipid acyl chains.  相似文献   

11.
Preincubation of sarcoplasmic reticulum with 1 mM-ATP completely inhibits Ca2+ accumulation and stimulates ATPase activity by over 2-fold. This effect of ATP is obtained only when the preincubation is carried out in the presence of Pi, but not with arsenate, chloride or sulphate. The inhibition by ATP of Ca2+ accumulation is pH-dependent, increasing as the pH is increased above 7.5. Inhibition of Ca2+ accumulation is observed on preincubation with ATP, but not with CTP, UTP, GTP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate or adenosine 5'-[beta gamma-imido]triphosphate. The presence of Ca2+, but not Mg2+, during the preincubation, prevents the effect of ATP + Pi on Ca2+ accumulation. The ATP + Pi inhibition of Ca2+ accumulation is not due to modification of the ATPase catalytic cycle, but rather to stimulation of a rapid Ca2+ efflux from actively or passively loaded vesicles. This Ca2+ efflux is inhibited by dicyclohexylcarbodi-imide. Photoaffinity labelling of sarcoplasmic-reticulum membranes with 8-azido-[alpha-32P]ATP resulted in specific labelling of two proteins, of approx. 160 and 44 kDa. These proteins were labelled in the presence of Pi, but not other anions.  相似文献   

12.
The structure, chemical composition and function of the microsomal fraction, isolated by differential centrifugation and purified on sucrose gradients, from muscle of fetal, newborn and young rabbits were characterized and compared with those of sarcoplasmic reticulum vesicles from adult muscle. Negative staining shows that the microsomal vesicles isolated from muscles of embryos and newborn animals are smooth, in contrast to vesicles obtained from adult muscle which contain 4-nm particles on their surface. The particles appear first in the microsomal vesicles from muscles of 5--8-day-old rabbits. Their number increases with the age of the animals. Ca2+-pump protein, with molecular weight about 100000, accounts for 10% of the total protein content in sarcoplasmic reticulum membrane, isolated at the earliest stages of development analysed. Its amount increases continuously with the rabbit's age to the adult value of about 70% of total sarcoplasmic reticulum protein. The low amount of 100000-dalton protein and lack of 4-nm surface particles in sarcoplasmic reticulum vesicles obtained from fetal and newborn rabbits are strictly correlated with the low activity of Ca2+-dependent ATPase and the ability to take up Ca2+. These activities rise in parallel with the age of the rabbits. On the other hand, Mg2+-dependent ATPase activity is very high at the early stages of development and declines continuously to a low value in sarcoplasmic reticulum from adult muscle. The sarcoplasmic reticulum membrane from fetal and newborn rabbits contains a higher amount of lipids as compared with the membrane present in the muscle of adult animals. The ratio of both phospholipid to protein and neutral lipid to protein decreases with the age of the rabbits. The composition of sarcoplasmic reticulum phospholipids also changes during development.  相似文献   

13.
The uptake and release of Ca2+ by sarcoplasmic reticulum fragments and reconstituted ATPase vesicles was measured by a stopped-flow fluorescence method using chlortetracycline as Ca2+ indicator. Incorporation of the Ca2+ transport ATPase into phospholipid bilayers of widely different fatty acid composition increases their passive permeability to Ca2+ by several orders of magnitude. Therefore in addition to participating in active Ca2+ transport, the (Mg2+ + Ca2+)-activated ATPase also forms hydrophilic channels across the membrane. The relative insensitivity of the permeability effect of ATPase to changes in the fatty acid composition of the membrane is in accord with the suggestion that the Ca2+ channels arise by protein-protein interaction between four ATPase molecules. The reversible formation of these channels may have physiological significance in the rapid Ca2+ release from the sarcoplasmic reticulum during activation of muscle.  相似文献   

14.
Preincubation of sarcoplasmic reticulum (SR) with propranolol or tetracaine inhibits Ca2+ accumulation and stimulates ATPase activity by more than 2-fold. This effect is obtained only when the preincubation is carried out in the presence of ATP or other nucleoside triphosphates. The (ATP + drug)-induced inhibition of Ca2+ accumulation is pH-dependent, increasing as the pH rises above 7.5. The presence of micromolar concentrations of Ca2+ or Mg2+ during the preincubation prevents the inhibitory effect of ATP plus drug on Ca2+ accumulation or ATPase activity. The (ATP + drug) modification of SR vesicles resulted in stimulation of a rapid Ca2+ efflux from passively loaded vesicles. The ATP-dependent inhibition of Ca2+ accumulation by the drug is obtained with other local anaesthetics. The drug concentration required for 50% inhibition was 0.15 mM for dibucaine and 0.4 mM for both propranolol and tetracaine, whereas it was 5 mM, 8 mM and greater than 10 mM for lidocaine, benzocaine and procaine respectively. The heavy SR vesicles were only slightly affected by the incubation with propranolol or tetracaine in the presence of ATP, but their sensitivity increased markedly after storage at 0 degrees C for 24-48 h. These results suggest that propranolol and some local anaesthetics, in the presence of ATP, stimulate Ca2+ efflux by modifying a protein factor(s) rather than the phospholipid bilayer.  相似文献   

15.
The effect of trifluoroperazine on the sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The inhibitory effect of trifluoroperazine (25-200 microM) on the sarcoplasmic reticulum calcium pump was studied in sarcoplasmic reticulum vesicles isolated from skeletal muscle. It was found that the lowest effective concentrations of trifluoroperazine (10 microM) displaces the Ca2+ dependence of sarcoplasmic reticulum ATPase to higher Ca2+ concentrations. Higher trifluoroperazine concentrations (100 microM) inhibit the enzyme even at saturating Ca2+. If trifluoroperazine is added to vesicles filled with calcium in the presence of ATP, inhibition of the catalytic cycle is accompanied by rapid release of accumulated calcium. ATPase inhibition and calcium release are produced by identical concentrations of trifluoroperazine and, most likely, by the same enzyme perturbation. These effects are related to partition of trifluoroperazine ino the sarcoplasmic reticulum membrane, and consequent alteration of the enzyme assembly within the membrane structure, and of the bilayer surface properties. The effect of trifluoroperazine was also studied on dissociated ('chemically skinned') cardiac cells undergoing phasic contractile activity which is totally dependent on calcium uptake and release by sarcoplasmic reticulum, and is not influenced by inhibitors of slow calcium channels. It was found that trifluoroperazine interferes with calcium transport by sarcoplasmic reticulum in situ, as well as with the role of sarcoplasmic reticulum in contractile activation.  相似文献   

16.
Pretreatment of sarcoplasmic membranes with acetic or maleic anhydrides, which interact principally with amino groups, resulted in an inhibition of Ca2+ accumulation and ATPase activity. The presence of ATP, ADP or adenosine 5'-[beta, gamma-imido]triphosphate in the modification medium selectively protected against the inactivation of ATPase activity by the anhydride but did not protect against the inhibition of Ca2+ accumulation. Acetic anhydride modification in the presence of ATP appeared to increase specifically the permeability of the sarcoplasmic reticulum membrane to Ca2+ but not to sucrose, Tris, Na+ or Pi. The chemical modification stimulated a rapid release of Ca2+ from sarcoplasmic reticulum vesicles passively or actively loaded with calcium, from liposomes reconstituted with the partially purified ATPase fraction but not from those reconstituted with the purified ATPase. The inactivation of Ca2+ accumulation by acetic anhydride (in the presence of ATP) was rapid and strongly pH-dependent with an estimated pK value above 8.3 for the reactive group(s). The negatively charged reagents pyridoxal 5-phosphate and trinitrobenzene-sulphonate, which also interact with amino groups, did not stimulate Ca2+ release. Since these reagents do not penetrate the sarcoplasmic reticulum membranes, it is proposed that Ca2+ release is promoted by modification of internally located, positively charged amino group(s).  相似文献   

17.
The catalytic behavior and structural features of Ca2+-ATPase in the vesicles of longitudinal tubules and terminal cisternae of the sarcoplasmic reticulum isolated from rabbit skeletal muscles was analysed. pH measurements have shown under optimal conditions Ca2+-ATPase has similar catalytic behavior both in the fractions of longitudinal tubules and terminal cisternae. Under non-optimal conditions, the behavior similarity was not observed. The specific activity of the ATPase enzyme under optimal conditions was shown to be much higher in the fraction of longitudinal tubules than in the fraction of terminal cisternae. Caffeine added to both fractions had no effect on the catalytic behavior of Ca2+-ATPase. As judged from fluorescence analysis, the structure of Ca2+-ATPase of longitudinal tubules differs from that structure of terminal cisternae. In sarcoplasmic reticulum membrane, at least half of the tryptophan residues of Ca2+-ATPase was shown to be buried in the lipid bilayer. Our findings suggest that in terminal cisternae some of the Ca2+-ATPase molecules exist as an oligomeric protein and do not participate in ATP hydrolysis (named "silent" Ca2+-ATPase).  相似文献   

18.
Smooth muscle expresses in its endoplasmic reticulum an isoform of the Ca2+-transport ATPase that is very similar to or identical with that of the cardiac-muscle/slow-twitch skeletal-muscle form. However, this enzyme differs from that found in fast-twitch skeletal muscle. This conclusion is based on two independent sets of observations, namely immunological observations and phosphorylation experiments. Immunoblot experiments show that two different antibody preparations against the Ca2+-transport ATPase of cardiac-muscle sarcoplasmic reticulum also recognize the endoplasmic-reticulum/sarcoplasmic-reticulum enzyme of the smooth muscle and the slow-twitch skeletal muscle whereas they bind very weakly or not at all to the sarcoplasmic-reticulum Ca2+-transport ATPase of the fast-twitch skeletal muscle. Conversely antibodies directed against the fast-twitch skeletal-muscle isoform of the sarcoplasmic-reticulum Ca2+-transport ATPase do not bind to the cardiac-muscle, smooth-muscle or slow-twitch skeletal-muscle enzymes. The phosphorylated tryptic fragments A and A1 of the sarcoplasmic-reticulum Ca2+-transport ATPases have the same apparent Mr values in cardiac muscle, slow-twitch skeletal muscle and smooth muscle, whereas the corresponding fragments in fast-twitch skeletal muscle have lower apparent Mr values. This analytical procedure is a new and easy technique for discrimination between the isoforms of endoplasmic-reticulum/sarcoplasmic-reticulum Ca2+-transport ATPases.  相似文献   

19.
The composition and function of fragmented sarcoplasmic reticulum from pig skeletal muscle was examined in the period immediately post mortem. Muscle was defined as being either slowly glycolysing or rapidly glycolysing on the basis of colour, pH and concentrations of glycogen and lactate. The microsomal fraction was separated on a discontinuous gradient of 35, 40 and 45% (w/v) sucrose into heavy and intermediate fractions which sedimented to the interfaces, and a light fraction which remained on the surface of the 35%-sucrose layer. The sarcoplasmic reticulum from rapidly glycolysing muscle had a lower buoyant density than had that from slowly glycolysing muscle. This was reflected in the consistent lack of material in the heavy fraction and a greater proportion in the light fraction. The latter material had significantly lower ratios (w/w) of protein to phospholipid (2.3:1 versus 3.8:1) and of protein to cholesterol (10.4:1 versus 15.6:1). There were no gross differences in phospholipid content or in fatty acid composition of individual phospholipid classes in the membranes from the two types of muscle. Analysis of membrane proteins by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showed that ATPase (adenosine triphosphatase) was a major component of each fraction and that its contribution to the total protein content of the membrane was greater in rapidly glycolysing muscle, suggesting a loss of non-ATPase proteins. The two fractions of sarcoplasmic reticulum prepared from rapidly glycolysing muscle had approximately one-third the normal activities of Ca(2+) binding and Ca(2+) uptake in the presence of ATP and one-half the passive Ca(2+)-binding capacity in the absence of ATP of the fractions from slowly glycolysing muscle. However, the (Ca(2+)+Mg(2+))-stimulated ATPase activities were similar. Efflux from actively loaded vesicles, after the addition of EDTA, consisted of a rapid and a slow phase. Vesicles from rapidly glycolysing muscle lost 60% of associated Ca(2+) (approx. 0.10mumol of Ca(2+)/mg of protein) during the rapid phase, compared with 30% (approx. 0.17mumol of Ca(2+)/mg of protein) in those from slowly glycolysing muscle. The efflux rate during the slower phase was comparable in both types of vesicles. Analysis of the temperature-dependence of (Ca(2+)+Mg(2+))-stimulated ATPase activity revealed that a high-activation-energy process operating in the temperature range 31-45 degrees C in the intermediate and light fractions from slowly glycolysing muscle was not apparent in vesicles from rapidly glycolysing muscle. Conditions that result in the prolonged activation of glycogenolysis in pig muscle post mortem primarily affect the protein components of the sarcoplasmic-reticular membrane, giving rise to a loss of loosely associated proteins. The function of the membranes observed under these conditions does not appear to be due to enhanced permeability of the membrane to Ca(2+) and may be the result of a defect in the transport of Ca(2+) into the vesicles.  相似文献   

20.
The (Ca2+ + Mg2+)-ATPase was purified from skeletal muscle sarcoplasmic reticulum and reconstituted into sealed phospholipid vesicles by solution in cholate and deoxycholate followed by detergent removal on a column of Sephadex G-50. The level of Ca2+ accumulated by these vesicles, either in the presence or absence of phosphate within the vesicles, increased with increasing content of phosphatidylethanolamine in the phospholipid mixture used for the reconstitution. The levels of Ca2+ accumulated in the absence of phosphate were very low for vesicles reconstituted with egg yolk phosphatidylcholine alone at pH 7.4, but increased markedly with decreasing pH to 6.0. Uptake was also relatively low for vesicles reconstituted with dimyristoleoyl- or dinervonylphosphatidylcholine, and addition of cholesterol had little effect. The level of Ca2+ accumulated increased with increasing external K+ concentration, and was also increased by the ionophores FCCP and valinomycin. Vesicle sizes changed little with changing phosphatidylethanolamine content, and the sidedness of insertion of the ATPase was close to random at all phosphatidylethanolamine contents. It is suggested that the effect of phosphatidylethanolamine on the level of Ca2+ accumulation follows from an effect on the rate of Ca2+ efflux mediated by the ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号