首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the role of the L-arginine/nitric oxide (NO)/cGMP pathway in p-benzoquinone-induced writhing model in mouse. L-arginine, a NO precursor, displayed antinociceptive effects at the doses of 0.125-1.0 mg/kg. When the doses of L-arginine were increased gradually to 10-100 mg/kg, a dose-dependent triphasic pattern of nociception-antinociception-nociception was obtained. The NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (18.7515 mg/kg), possessed antinociceptive activity. Methylene blue (MB), a guanylyl cyclase and/or NOS inhibitor, (5-160 mg/kg) also produced a dose-dependent triphasic response. When L-arginine (50 mg/ kg) was combined with L-NAME (75 mg/kg). L-arginine-induced antinociception did not change significantly. Cotreatment of L-arginine with 5 mg/kg MB significantly decreased MB-induced antinociception and reversed the nociception induced by 40 mg/kg MB to antinociception. It is concluded that the components of L-arginine/nitric oxide/cGMP cascade may participate in nociceptive processes both peripherally and centrally by a direct effect on nociceptors or by the involvement of other related pathways of nociceptive processes induced by NO.  相似文献   

2.
The effect of prostacyclin infusion into the renal artery of the isolated perfused hog kidney on the release of active and inactive renin was investigated. Infusion of prostacyclin at a rate of 0.1 μg/min resulted in a significant increase (p<0.01) in active renin and a significant fall (p<0.01) in inactive renin. Prostacyclin also increased urinary kallikrein excretion (p<0.05). The results indicate that the kidney secretes not only active renin but also inactive renin, and suggest that prostacyclin stimulates the conversion of inactive renin to the active form through the activation of the renal kallikrein system.  相似文献   

3.
We examined modulation by nitric oxide (NO) of sympathetic neurotransmitter release and vasoconstriction in the isolated pump-perfused rat kidney. Electrical renal nerve stimulation (RNS; 1 and 2 Hz) increased renal perfusion pressure and renal norepinephrine (NE) efflux. Nonselective NO synthase (NOS) inhibitors [N(omega)-nitro-L-arginine methyl ester (L-NAME) or N(omega)-nitro-L-arginine], but not a selective neuronal NO synthase inhibitor (7-nitroindazole sodium salt), suppressed the NE efflux response and enhanced the perfusion pressure response. Pretreatment with L-arginine prevented the effects of L-NAME on the RNS-induced responses. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), which eliminates NO by oxidizing it to NO(2), suppressed the NE efflux response, whereas the perfusion pressure response was less susceptible to carboxy-PTIO. 8-Bromoguanosine cGMP suppressed and a guanylate cyclase inhibitor [4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one] enhanced the RNS-induced perfusion pressure response, but neither of these drugs affected the NE efflux response. These results suggest that endogenous NO facilitates the NE release through cGMP-independent mechanisms, NO metabolites formed after NO(2) rather than NO itself counteract the vasoconstriction, and neuronal NOS does not contribute to these modulatory mechanisms in the sympathetic nervous system of the rat kidney.  相似文献   

4.
The role of nitric oxide (NO), K(+) channels, and arachidonic acid metabolism, via cytochrome P450 and cyclooxygenase pathways, in the renal vasodilatory effect of bradykinin was examined in the isolated rat kidney perfused ex situ with a blood-free solution. Bradykinin (BK, 0.25-1.0 microM) induced a dose-dependent reduction of 10-35% in the relative renal vascular resistance (rRVR) of isolated kidneys preconstricted with phenylephrine (PHE, 0.17-0.35 microM). The vasodilating effect of 0.5 microM bradykinin was significantly inhibited by the nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (95% inhibition) and N(G)-nitro-L-arginine methyl ester (45-75% inhibition). Clotrimazole, an inhibitor of cytochrome P450 pathway but not indomethacin, a cyclooxygenase inhibitor, reduced the renal vasodilator response to bradykinin by 84%. The nonspecific K(+) channel inhibitor, tetraethylammonium ion (TEA) and the selective inhibitor of Ca(2+)-activated K(+) channels, charybdotoxin (ChTX) greatly attenuated the vasodilator response to bradykinin by approximately 84% and 79%, respectively. These two K(+) channel inhibitors showed similar effects on vasodilatation induced by S-nitroso-acetyl-D,L-penicillamine (1 microM), a nitric oxide donor. The results suggest that bradykinin releases nitric oxide which, by opening potassium channels specifically the Ca(+)-dependent type, mediates the renal vasodilator response to bradykinin in the isolated kidney perfused ex situ.  相似文献   

5.
The nature of the action of the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) on hormone release from isolated islets was investigated. We found that glucose-induced insulin release was potentiated by L-NAME in the absence or presence of diazoxide, a potent channel opener, as well as in the presence of diazoxide plus a depolarizing concentration of K+. At a low, physiological glucose concentration L-NAME did not influence insulin secretion induced by K+ but inhibited glucagon secretion. L-arginine-induced insulin release was potentiated by L-NAME. This potentiation was observed also in the presence of K+ plus diazoxide. Further, glucagon release induced by L-arginine as well as by L-arginine plus K+ and diazoxide was suppressed by L-NAME. The results strongly suggest that the L-NAME-induced potentiation of insulin secretion in response to glucose or L-arginine as well as the inhibitory effects on glucagon secretion are largely mediated by L-NAME directly suppressing islet NOS activity. Hence NO apparently affects insulin and glucagon secretion independently of membrane depolarization events.  相似文献   

6.
The clinical use of the widely used anticancer drug doxorubicin is limited by a dose-dependent cardiotoxicity. Doxorubicin can be reduced to its semiquinone free radical form by nitric oxide synthases (NOS). The release of lactate dehydrogenase (LDH) from doxorubicin-treated neonatal cardiac rat myocytes was used as a model of doxorubicin-induced cardiotoxicity. The NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) and N(G)-monomethyl-L-arginine (L-NMMA) protected myocytes from doxorubicin as did their non-inhibitory enantiomers D-NAME and D-NMMA. Thus, these agents did not protect by inhibiting NOS. L-NAME, which does not act at the reductase domain of NOS, also had no effect on the production of the doxorubicin semiquinone by myocytes. Nitric oxide (NO) EPR spin trapping experiments showed that L-NAME reacted with various biological reducing agents to produce NO. Ascorbic acid was highly effective in reacting with L-NAME to produce NO, while glutathione, NADPH, and NADH were much less effective. Thus, these guanadino-substituted analogs of L-arginine likely protected through their ability to slowly produce NO by reaction with intracellular ascorbic acid. Thus, some caution must be exercised in their use. NO may exert its protective effects either by directly acting as an antioxidant or through some other NO-dependent pathway.  相似文献   

7.
The present study investigated the role of nitric oxide (NO) on atrial natriuretic peptide (ANP) release stimulated by angiotensin II (Ang II) (10(-7) M) in superfused sliced rat atrial tissue. The use of N(G)-nitro-L-arginine methyl ester (L-NAME) at 10(-4) M, an inhibitor of nitric oxide synthase did not modify basal ANP release. In presence of Ang II (10(-7) M), we observed that L-NAME enhanced ANP secretion induced by Ang II. Furthermore, cGMP levels increased significantly in the presence of Ang II and was attenuated by L-NAME. On the other hand, the perfusion of 8 bromo-cGMP (10(-5) M) with Ang II reduced the effect of this octapeptide on ANP secretion. Secondly, we evaluated the effect of authentic NO on ANP release and observed that perfusion of NO reduced significantly the effect of Ang II on ANP release. We propose that the effect of Ang II on ANP secretion was modulated by NO likely via cGMP pathway.  相似文献   

8.
The effects of infusion of a large amount of aldosterone into the renal artery of isolated perfused hog kidney on the release of renin, prostaglandins (PG) and kinin and the excretion of urinary kallikrein were investigated. Infusion of aldosterone at a rate of 100 ng/min (100 to 800 ng/ml of perfusate) resulted in significant releases of renin, PG (PGE2, 6-0-PGF), and kinin and increase in urinary kallikrein. Infusion of aldosterone and an inhibitor of kallikrein, aprotinin, decreased the releases of renin, PG and kinin and infusion of aldosterone with indomethacin decreased the release of PG but increased that of kinin and urinary kallikrein without significant change in renin releases. These findings suggest that the release of renin by aldosterone may result from synergic effects of renal PG and the kallkrein-kinin system.  相似文献   

9.
We examined the role of the nitric oxide (NO) pathway on ischemia-reperfusion injury via the use of isolated perfused guinea pig lungs. We administered both L-Arginine and N-nitro-L-arginine methyl ester (L-NAME) to the lungs in or after 3 h of ischemia. We observed pulmonary artery pressures as well as tissue and perfusate malondialdehyde (MDA) and glutathione (GSH) levels. We observed that L-NAME significantly increased both tissue and perfusate GSH levels and pulmonary artery pressures, but it decreased both tissue and perfusate MDA levels. On the other hand, L-arginine significantly decreased pulmonary artery pressure and both tissue and perfusate glutathione levels, but it increased both tissue and perfusate MDA levels. Electron microscopic evaluation supported our findings by indicating the preservation of lamellar bodies of type II pneumocytes. We concluded that L-NAME administration during reperfusion improves lung recovery from ischemic injury.  相似文献   

10.
Ma HJ  Liu YX  Wu YM  He RR 《生理学报》2003,55(2):225-231
研究旨在应用记录肾传人神经多单位和单位放电的方法,观察肾动脉内注射L—精氨酸对麻醉家兔肾神经传人纤维自发放电活动的影响。结果表明:(1)肾动脉内注射L—精氨酸(0.05、0.24和0.48mmol/kg)可呈剂量依赖性地抑制肾传人纤维的活动,而动脉血压不变;(2)静脉内预先注射一氧化氮合酶抑制剂L—NAME(0.11mmol/kg),可完全阻断L—精氨酸对肾传人纤维的抑制;(3)肾动脉注射一氧化氮(N0)供体SIN—1(3.75μmol/kg)也可抑制肾传入神经的活动。以上结果提示:肾动脉内应用N0前体L—精氨酸和N0供体SIN—1均可抑制肾传入纤维的自发活动。  相似文献   

11.
The ionophore A23187 evoked a dose-dependent release of renin from the isolated perfused cat kidney, which was inhibited by calcium deprivation and adrenergic blockade. The latter finding indicates that the effects of A23187 on the intact kidney are mediated mainly by catecholamine release from sympathetic nerve endings. Ionophore also elicited a concentration-dependent enhancement of renin secretion from a pure preparation of glomeruli isolated from cat kidney; this stimulation was still manifest when the glomeruli were superfused with a calcium-free solution. These findings indicate that A23187 evokes renin secretion from juxtaglomerular cells by mobilizing cellular calcium and support the view that an increase in intracellular calcium is intimately involved in the mechanism of renin secretion.  相似文献   

12.
In the present study the role of endogenous nitric oxide (NO) in the vasopressin-induced ACTH and corticosterone secretion was investigated in conscious rats. Vasopressin (AVP 5 microg/kg i.p.) considerably augmented ACTH and corticosterone secretion. L-arginine (120 and 300 mg/kg i.p.) did not significantly alter the AVP-induced secretion of those hormones. Nitric oxide synthase (NOS) blockers N(omega)-nitro-L-arginine (L-NNA) and its methyl ester (L-NAME) given i.p. 15 min before AVP markedly increased the AVP-induced ACTH secretion. L-NNA (2 mg/kg) more potently and significantly increased the AVP-induced ACTH secretion, whereas L-NAME elicited a weaker and not significant effect. Both those NOS antagonists intensified significantly and to a similar extent the AVP-induced corticosterone secretion. L-arginine (120 mg/kg i.p.) reversed the L-NNA-induced rise in the AVP-stimulated ACTH secretion and substantially diminished the accompanying corticosterone secretion. Neither vasopressin alone nor in combination with L-arginine and L-NAME evoked any significant alterations in the hypothalamic noradrenaline and dopamine levels. L-NNA (2 and 10 mg/kg i.p.) elicited a dose dependent and significant decrease in the hypothalamic noradrenaline level. The hypothalamic dopamine level was not significantly altered by any treatment. These results indicate that in conscious rats endogenous NO has an inhibitory influence on the AVP-induced increase in ACTH and corticosterone secretion. L-NNA is significantly more potent than L-NAME in increasing the AVP-induced ACTH secretion. This may be connected with a considerable increase by L-NNA of hypothalamic noradrenergic system activation which stimulates the pituitary-adrenal axis in addition to specific inhibition of NOS.  相似文献   

13.
Endothelin-1 (ET-1) elicits a vasoconstrictor response via ET(A) receptors, whereas simultaneous activation of ET(B) receptors triggers the release of nitric oxide (NO), which may limit the constrictor effect of ET-1. Recently, stimulation of ET(B) receptors has been shown to increase the secretion of adrenomedullin (AM), a newly identified vasorelaxing peptide. The present study was designed to see whether AM can oppose the vasoconstrictor response to ET-1. In the isolated perfused paced rat heart preparation, infusion of ET-1 at concentrations of 1 nmol/l for 30 min induced a significant coronary vasoconstriction, whereas it had no effect on perfusion pressure at a dose of 0.08 nmol/l. N(omega)-nitro-L-arginine methyl ester (L-NAME; 300 micromol/l), a potent inhibitor of NO synthase (NOS), did not change the perfusion pressure when added alone to the perfusion fluid but it unmasked the constrictor effect of ET-1 at both concentrations. In the presence of L-NAME, AM (0.03 to 1 nmol/l) markedly reversed the pressor response to ET-1 at both concentrations. Administration of AM (0.03 and 1 nmol/l) alone resulted in a dose-dependent decrease in perfusion pressure, which was not modified in the presence of L-NAME. In conclusion, the coronary vasoconstrictor response to ET-1 is markedly augmented in the presence of a NOS inhibitor. This constrictor response is substantially reversed by AM. Our results indicate that AM may serve as a paracrine modulator of ET-1-induced vasoconstriction independently of the NO pathway.  相似文献   

14.
This study was designed to determine the role of endogenous nitric oxide (NO) in the corticotropin-releasing hormone (CRH)-induced ACTH and corticosterone secretion, as well as possible involvement of hypothalamic dopamine and noradrenaline in that secretion in conscious rats. CRH given i.p. stimulated dose-dependently the pituitary-adrenocortical activity measured 1 h later. Dexamethasone (0.2 mg/kg i.p.) injected 1 h before CRH (1 microg/kg i.p.) totally abolished the CRH-elicited ACTH and corticosterone secretion, indicating a predominantly pituitary site of CRH-evoked stimulation. L-arginine (120 mg/kg i.p.) and N(omega)-nitro-L-arginine methyl ester (L-NAME 5-10 mg/kg i.p.) did not markedly affect the basal plasma ACTH and corticosterone levels. L-NAME given 15 min before CRH markedly, but not significantly, augmented the CRH-induced ACTH response, and enhanced more potently and significantly the corticosterone response. Pretreatment with L-arginine, a substrate for NOS, slightly diminished the CRH-induced ACTH response and considerably reduced the corticosterone response. L-arginine also significantly reversed the L-NAME-evoked increase in the CRH-induced ACTH and corticosterone secretion. L-NAME did not markedly alter the CRH-induced hypothalamic dopamine and noradrenaline levels, while L-arginine significantly increased noradrenaline level. However, those alterations were not directly correlated with the observed changes in ACTH and corticosterone secretion. These results indicate that in conscious rats NO plays a marked inhibitory role in the CRH-induced ACTH secretion and inhibits more potently corticosterone secretion. Hypothalamic dopamine and noradrenaline do not seem to be directly involved in the observed alterations in ACTH and corticosterone secretion.  相似文献   

15.
Erythrocytes (red blood cells) of either rabbits or healthy humans are required to demonstrate the participation of nitric oxide (NO) in the regulation of pulmonary vascular resistance in the isolated rabbit lung. The property of the erythrocyte that is responsible for the stimulation of NO synthesis was reported to be the ability to release ATP in response to physiological stimuli, including deformation. Moreover, a signal transduction pathway that relates mechanical deformation of erythrocytes to ATP release has been described, and the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is a component, i.e., erythrocytes of individuals with CF do not release ATP in response to deformation. Here, we investigated the hypothesis that, in contrast to those of healthy humans, erythrocytes of humans with CF fail to stimulate endogenous NO synthesis in the isolated rabbit lung. We report that CFTR is a component of the membranes of both rabbit and human erythrocytes. The addition of the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 muM) produced increases in vascular resistance in isolated rabbit lungs perfused with physiological salt solution (PSS) containing erythrocytes of healthy humans, but L-NAME was without effect when the lungs were perfused with PSS alone or PSS containing erythrocytes of CF patients. These results provide support for the hypothesis that, in CF, a defect in ATP release from erythrocytes could lead to decreased endogenous pulmonary NO synthesis and contribute to pulmonary hypertension.  相似文献   

16.
The effects of bradykinin and ATP on L-arginine transport and nitric oxide (NO) production were studied in porcine aortic endothelial cells cultured and perfused on microcarriers and deprived of L-arginine for 24 h. Stimulation of cells with bradykinin (100 nM) or ATP (100 microM) resulted in a rapid increase in L-arginine uptake and NO release. In the presence of nitro-L-arginine (100 microM), an inhibitor of NO synthase, the stimulatory effect of bradykinin on L-arginine uptake was partially inhibited while NO release was completely abolished. Nitro-L-arginine alone was not an inhibitor of basal L-arginine transport, suggesting that its inhibitory action was not directly on the L-arginine transporter but a result of the inhibition of NO generation. These data indicate that during agonist-stimulated NO production there is a concomitant increase in the transport of L-arginine into endothelial cells providing a mechanism for the continual generation of NO.  相似文献   

17.
The L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L-arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light-dark cycle. Animals were injected s.c. with saline, 2 mg/kg L-arginine (a NO precursor), 75 mg/kg L-N(G)-nitroarginine methyl ester (L-NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p-benzoquinone (PBQ)-induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L-arginine or L-NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time-dependent differences in PBQ-induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L-NAME, methylene blue, or sodium nitroprusside, but not saline or L-arginine. These results suggest that components of L-arginine/NO/cGMP pathway exhibit biological time-dependent effects on visceral nociceptive process.  相似文献   

18.
Two enzyme inhibitors namely L-NAME, a nitric oxide synthase (NOS) inhibitor and methylene blue, a guanylate cyclase inhibitor, were used to elucidate whether N-alpha-tosyl L-arginine methyl ester (TAME)-induced contractions in toad intestinal rings in vitro are mediated through a nitric oxide (NO)- cyclic GMP (c-GMP) pathway. Moreover, a NO precursor, L-arginine was also used to investigate its effect on TAME-induced contractions. Our findings provide evidence that TAME-induced contractions have both an endothelium-dependent and an endothelium-independent component. Based on our findings we now propose that TAME induced contraction involves an endothelium-dependent component mediated through NO and c-GMP.  相似文献   

19.
应激状态下NO的胃粘膜保护作用及其与壁细胞泌酸的关系   总被引:4,自引:0,他引:4  
目的:探讨应激状态下一氧化氮(NO)的胃粘膜保护作用及其与壁细胞泌酸的关系.方法:采用水浸-束缚应激(WRS)方法制备应激性溃疡(SU)动物模型,检测胃粘膜溃疡指数(UI)、胃粘膜NO含量和壁细胞H ,K -ATPase活性,观察L-硝基精氨酸甲酯(L-NAME)和L-精氨酸(L-Arg)对应激后大鼠壁细胞H ,K -ATPase活性及胃粘膜损伤的影响.结果:L-NAME(20 mg·kg-1)可使胃粘膜NO含量减少(P<0.01),壁细胞H ,K -AT-Pase活性增加(P<0.05),并加重应激所致的胃粘膜损伤;L-Arg(300 mg·kg-1)则使胃粘膜NO含量增加(P<0.01),壁细胞H ,K -ATPase活性下降(P<0.05),减轻应激所致胃粘膜损伤.结论:NO对应激状态下大鼠胃粘膜具有保护作用,其机制与抑制壁细胞H ,K -ATPase活性有关.  相似文献   

20.
L-Arginine crosses the cell membrane primarily through the system y(+) transporter. The aim of this study was to investigate the role of L-arginine transport in nitric oxide (NO) production in aortas of rats with heart failure induced by myocardial infarction. Tumor necrosis factor-alpha levels in aortas of rats with heart failure were six times higher than in sham rats (P < 0.01). L-Arginine uptake was increased in aortas of rats with heart failure compared with sham rats (P < 0.01). Cationic amino acid transporter-2B and inducible (i) nitric oxide synthase (NOS) expression were increased in aortas of rats with heart failure compared with sham rats (P < 0.05). Aortic strips from rats with heart failure treated with L-arginine but not D-arginine increased NO production (P < 0.05). The effect of L-arginine on NO production was blocked by L-lysine, a basic amino acid that shares the same system y(+) transporter with L-arginine, and by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Treatment with L-lysine and L-NAME in vivo decreased plasma nitrate and nitrite levels in rats with heart failure (P < 0.05). Our data demonstrate that NO production is dependent on iNOS activity and L-arginine uptake and suggest that L-arginine transport plays an important role in enhanced NO production in heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号