首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol withdrawal increases nociception after the injection of formalin into the rat's temporomandibular joint (TMJ). Little is known about the neurological basis for hyperalgesia induced by ethanol withdrawal, but it has been reported that ethanol can potentiate the response of transient receptor potential vanilloid receptor-1 (TRPV1) in superficial tissues. The present study was designed to test the hypothesis that peripheral TRPV1 could be involved on nociceptive behavioral responses induced by the injection of formalin into the TMJ region of rats exposed to chronic ethanol administration and ethanol withdrawal. Behavioral hyperalgesia was verified 12 h after ethanol withdrawal in rats that drank an ethanol solution (6.5%) for 10 days. In another group submitted to the same ethanol regimen, the selective vanilloid receptor antagonist capsazepine (300, 600 or 1200 microg/25 microl) or an equal volume of vehicle were injected into the TMJ regions 30 min before the TMJ formalin test. The local injections of capsazepine reduced the increased nociceptive responses induced by ethanol withdrawal. The effect of capsazepine on rats that did not drink ethanol was not significant. These results indicate that the peripheral TRPV1 can contribute to the hyperalgesia induced by ethanol withdrawal on deep pain conditions.  相似文献   

2.
Previous studies demonstrated that intracerebroventricular (icv) injection of a kappa opioid receptor agonist decreased, and a mu agonist increased, body temperature (Tb) in rats. A dose-response study with the selective kappa antagonist nor-binaltorphimine (nor-BNI) showed that a low dose (1.25 nmol, icv) alone had no effect, although a high dose (25 nmol, icv) increased Tb. It was hypothesized that the hyperthermia induced by nor-BNI was the result of the antagonist blocking the kappa opioid receptor and releasing its inhibition of mu opioid receptor activity. To determine whether the Tb increase caused by nor-BNI was a mu receptor-mediated effect, we administered the selective mu antagonist CTAP (1.25 nmol, icv) 15 min after nor-BNI (25 nmol, icv) and measured rectal Tb in unrestrained rats. CTAP significantly antagonized the Tb increase induced by icv injection of nor-BNI. Injection of 5 or 10 nmol of CTAP alone significantly decreased the Tb, and 1.25 nmol of nor-BNI blocked that effect, indicating that the CTAP-induced hypothermia was kappa-mediated. The findings strongly suggest that mu antagonists, in blocking the basal hyperthermia mediated by mu receptors, can unmask the endogenous kappa receptor-mediated hypothermia, and that there is a tonic balance between mu and kappa opioid receptors that serves as a homeostatic mechanism for maintaining Tb.  相似文献   

3.
A novel 6,14-epoxymorphinan benzamide derivative (NS22) was synthesized, which showed opioid kappa receptor agonistic activity in the [(35)S]GTPgammaS binding assay. The antinociceptive effect of NS22 was evaluated in the tail-flick and the hot-plate test. This compound showed a potent antinociceptive activity in mice by s.c. administration, which was attenuated with nor-BNI (selective opioid kappa receptor antagonist).  相似文献   

4.
Pruhs RJ  Peña RT  Quock RM 《Life sciences》2007,80(19):1816-1820
Intracerebroventricular (i.c.v.) administration of the neutral endopeptidase 24.11-inhibitor phosphoramidon evoked a dose-dependent antinociceptive effect in the mouse acetic acid abdominal constriction test. The present study was conducted to identify the opioid receptor subtype(s) that mediate phosphoramidon antinociception in this paradigm. Mice were pretreated with different opioid antagonists prior to being challenged with phosphoramidon, i.c.v., the mu-opioid agonist sufentanil, s.c., or the kappa-opioid agonist U-50,488H, s.c. Naltrexone significantly attenuated phosphoramidon-induced antinociception at an i.c.v. dose that also blocked both sufentanil and U-50,488H. The mu-opioid antagonist beta-funaltrexamine (beta-FNA) blocked phosphoramidon and sufentanil at an i.c.v. dose that did not block U-50,488H. The kappa-opioid antagonist nor-binaltorphimine (nor-BNI) produced dose-related effects. A low dose (10 microg) of nor-BNI had no effect on either phosphoramidon or sufentanil but did reduce U-50,488H antinociception. A higher dose (30 microg) of nor-BNI blocked phosphoramidon, sufentanil, and U-50,488H, suggesting a loss of kappa-opioid receptor selectivity at this dose. These findings suggest that mu- but not kappa-opioid receptors mediate phosphoramidon-induced antinociception in the abdominal constriction test.  相似文献   

5.
The present study was performed in rats with experimentally induced mononeuropathy after common sciatic nerve ligation. The hind-paw withdrawal latencies to thermal and mechanical stimulation were increased significantly after intrathecal injection of 3 nmol of galanin. The increased hind-paw response latencies induced by galanin were attenuated by following intrathecal injection of 22 nmol, but not 11 or 2.75 nmol of the opioid receptor antagonist naloxone. Further, the increased hind-paw response latencies induced by galanin were prevented by following intrathecal injection of 10 nmol of mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA), but not by 10 nmol of delta-opioid receptor antagonist, natrindole or 10 nmol of kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI). Intrathecal 10 nmol of beta-FNA alone had no significant effects on the hind-paw withdrawal responses. These results demonstrate the existence of a specific interaction between galanin and opioids in the transmission of presumed nociceptive information in the spinal cord of mononeuropathic rats. This interaction involves the activation of mu-opioid receptor.  相似文献   

6.
It has been reported that ethanol can alter nociceptive sensitivity from superficial tissues, such as skin and subcutaneous region. However, the influence of ethanol on deep pain conditions is not understood. The aim of this study was to demonstrate the acute, chronic and ethanol withdrawal effects on nociceptive behavioral responses induced by the injection of formalin into the temporomandibular joint (TMJ) region of rats. In experiment 1, rats were injected with ethanol (2,5 g/Kg, i.p.) or an equal volume of saline 15 min before the administration of formalin (1.5%) into the TMJ. Rats pretreated with ethanol showed a decrease in nociceptive behavioral responses. In experiment 2, rats were given an ethanol solution (6.5%) or tap water to drink for 4 and 10 days. On day 4, the animals (ethanol group) showed amounts of analgesia when submitted to the TMJ formalin test. Tolerance to the antinociceptive effects was observed on day 10. Behavioral hyperalgesia was verified 12 hr after withdrawal in another group that drank ethanol for 10 days. These results show that ethanol can affect the nociceptive responses related to deep pain evoked by the TMJ formalin test.  相似文献   

7.
Sun HL  Zheng JW  Wang K  Liu RK  Liang JH 《Life sciences》2003,72(11):1221-1230
Tramadol, an atypical opioid analgesic, stimulates both opiatergic and serotonergic systems. Here we have investigated the effect of tramadol in mice on 5-hydroxyptrytophan (5-HTP)-induced head twitch response (HTR), which is an animal model for the activation of the CNS 5-HT(2A) receptors in mice. Tramadol attenuated 5-HTP-induced HTR in a dose-dependent manner as morphine. Furthermore, the nonselective opioid receptor antagonists, naloxone and diprenorphine (M5050), reversed the effect of tramadol on 5-HTP-induced HTR dose-dependently. Interestingly, in contrast to the selective delta opioid receptor antagonist NTI, beta-FNA, a selective mu receptor antagonist, and nor-BNI, a selective kappa opioid receptor antagonist, antagonized the attenuation of 5-HTP-induced HTR by tramadol. In conclusion, administration of tramadol systemically inhibits 5-HTP-induced HTR in mice by activating opiatergic system in the CNS. Our findings show that mu and kappa opioid receptors, but not delta opioid receptor, play an important role in the regulation of serotonergic function in the CNS.  相似文献   

8.
Recent studies showed that oxytocin plays an important role in nociceptive modulation in the central nervous system. The present study was undertaken to investigate the role of oxytocin in antinociception in the nucleus raphe magnus (NRM) of rats and the possible interaction between oxytocin and the opioid systems. Intra-NRM injection of oxytocin induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulation in rats. The antinociceptive effect of oxytocin was significantly attenuated by subsequent intra-NRM injection of the oxytocin antagonist 1-deamino-2-D-Tyr-(Oet)-4-Thr-8-Orn-oxytocin. Intra-NRM injection of naloxone dose-dependently antagonized the increased HWLs induced by preceding intra-NRM injection of oxytocin, indicating an involvement of opioid receptors in oxytocin-induced antinociception in the NRM of rats. Furthermore, the antinociceptive effect of oxytocin was dose-dependently attenuated by subsequent intra-NRM injection of the mu-opioid antagonist beta-funaltrexamine (beta-FNA), but not by the kappa-opioid antagonist nor-binaltorphimine (nor-BNI) or the delta-opioid antagonist naltrindole. The results demonstrated that oxytocin plays an antinociceptive role in the NRM of rats through activating the oxytocin receptor. Moreover, mu-opioid receptors, not kappa and delta receptors, are involved in the oxytocin-induced antinociception in the NRM of rats.  相似文献   

9.
The pharmacological profile of naltrindole (NTI) and three of its analogues, N-methyl-NTI (N-Me-NTI), oxymorphindole (OMI) and naltriben (NTB) were studied in antinociceptive assays. The compounds were found to have agonist activities that appear to be mediated mainly by kappa opioid receptors because norbinaltorphimine (nor-BNI), the selective kappa opioid receptor antagonist inhibited their effects significantly. All of the compounds, behaved as antagonists at doses that were lower than those that produced agonist effects and they possessed a profile that was very selective for inhibiting the antinociceptive activities of delta opioid receptor agonists. Differential antagonism by NTB of the activities of DSLET and DPDPE was demonstrated.  相似文献   

10.
Z H Song  A E Takemori 《Life sciences》1991,48(15):1447-1453
The modulatory effects of intrathecally (i.t.) administered dynorphin A(1-17) and dynorphin A(1-13) on morphine antinociception have been studied previously in rats by other investigators. However, both potentiating and attenuating effects have been reported. In this study, the modulatory effects of i.t. administered dynorphin A(1-17) as well as the smaller fragment, dynorphin A(1-8), were studied in mice. In addition, nor-binaltorphimine (nor-BNI), a highly selective kappa opioid receptor antagonist, and naltrindole (NTI), a highly selective delta opioid receptor antagonist, were used to characterize the possible involvement of spinal kappa and delta opioid receptors in the modulatory effects of the dynorphins. Dynorphin A(1-17) and dynorphin A(1-8) administered i.t. at doses that did not alter tail-flick latencies, were both able to antagonize in a dose-dependent manner, the antinociceptive action of s.c. administered morphine sulfate. The antinociceptive ED50 of morphine sulfate was increased 3.9- and 5.3-fold by 0.4 nmol/mouse of dynorphin A(1-17) and dynorphin A(1-8), respectively. Injections of 0.4 and 0.8 nmol/mouse of nor-BNI i.t., but not its inactive enantiomer (+)-1-nor-BNI, inhibited dose-dependently the antagonistic effects of the dynorphins. These doses of nor-BNI alone did not affect the antinociceptive action of morphine sulfate. Intrathecal administration of 5 nmol/mouse of NTI also did not affect the modulatory effects of dynorphins. These observations that dynorphins exert their antagonistic effects on morphine-induced antinociception stereoselectively through spinal kappa opioid receptors may suggest a coupling between spinal kappa and mu opioid receptors.  相似文献   

11.
Sun YG  Yu LC 《Regulatory peptides》2005,124(1-3):37-43
The fact that galanin, beta-endorphin and their receptors are present in the arcuate nucleus of hypothalamus (ARC), coupled with our previous observation that both beta-endorphin and galanin play antinociceptive roles in pain modulation in the ARC, made it of interest to study their interactions. The hindpaw withdrawal latency (HWL) in response to noxious thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. We showed that the antinociceptive effect induced by intra-ARC injection of galanin was dose-dependently attenuated by the following intra-ARC injection of naloxone. Furthermore, intra-ARC administration of the selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) attenuated the increased HWL induced by intra-ARC injection of galanin in a dose-dependent manner, while the delta-opioid receptor antagonist naltrindole or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) did not. Moreover, intra-ARC injection of a galanin receptor antagonist galantide attenuated intraperitoneal morphine-induced increases in HWLs. These results demonstrate that the antinociceptive effect of galanin was related to the opioid system, especially mu-opioid receptor was involved in, and that systemic morphine induced antinociception involves galanin in the ARC.  相似文献   

12.
13.
The opioid antagonist properties of nor-binaltorphimine (nor-BNI; 17,17'-Bis(cyclopropylmethyl)-6,6',7,7'-tetradehydro-4,5:4', 5'-diepoxy-6,6'-(imino) [7,7'-bimorphinan]-3,3',14,14'-tetrol) were evaluated in vivo in the rat maximal electroshock (MES) seizure model. Following s.c. or i.c.v. pretreatment, nor-BNI selectively antagonized the anticonvulsant effects of the kappa opioid U50, 488, significantly increasing its ED50 by 2.3 and 4.5 fold, respectively. In contrast, pretreatment with nor-BNI (s.c. or i.c.v.) failed to antagonize the anticonvulsant effects of the selective mu opioid, DAMGO. At the doses and injection routes used, nor-BNI itself had no apparent effect on overt behavior or MES-induced convulsions. These data support the earlier suggestion that the anticonvulsant effects of U50,488 are mediated by kappa opioid receptors and confirm 1) the selectivity of nor-BNI as a kappa antagonist and 2) its applicability as a pharmacological tool in the differentiation of multiple opioid receptors.  相似文献   

14.
Analgesic effect of interferon-alpha via mu opioid receptor in the rat   总被引:4,自引:0,他引:4  
Using the tail-flick induced by electro-stimulation as a pain marker, it was found that pain threshold (PT) was significantly increased after injecting interferon-alpha (IFN alpha) into the lateral ventricle of rats. This effect was dosage-dependent and abolished by monoclonal antibody (McAb) to IFN alpha. Naloxone could inhibit the analgesic effect of IFN alpha, suggesting that the analgesic effect of IFN alpha be related to the opioid receptors. Beta-funaltrexamine (beta-FNA), the mu specific receptor antagonist could completely block the analgesic effect of IFN alpha. The selective delta-opioid receptor antagonist, ICI174,864 and the kappa-opioid receptor antagonist, nor-BNI both failed to prevent the analgesic effect of IFN alpha. IFN alpha could significantly inhibit the production of the cAMP stimulated by forskolin in SK-N-SH cells expressing the mu-opioid receptor, not in NG108-15 cells expressing the delta-opioid receptor uniformly. The results obtained provide further evidence for opioid activity of IFN alpha and suggest that this effect is mediated by central opioid receptors of the mu subtype. The evidence is consistent with the hypothesis that multiple actions of cytokines, such as immunoregulatory and neuroregulatory effects, might be mediated by distinct domains of cytokines interacting with different receptors.  相似文献   

15.
The effect of immobilization of pregnant rats was studied on parameters of the specific biphasic behavioral response (BBR) (patterns of flexion, shaking, licking, duration of the phases and of the interphase interval), of which the first phase characterizes the acute, while the second, he long-term pain in a nociceptive formalin test in the 40-day old female and male off-spring. The following was found: (1) an increase of intensity of patterns of flexion and shaking in the extremity injected with formalin at the second response phase and of the phase duration both in males and in females, (2) an increase of the licking pattern during the second phase and of the phase duration in males. Thus, the prenatal stress produced an increase of the pain sensitivity only at the long-term BBR phase; this increase was revealed in males from the patterns organized at the spinal and supraspinal levels, whereas in females, only at the spinal level. It was concluded that at the period of sex maturation, before the onset of sex maturity, the prenatally stressed males had more expressed damages in the behavioral parameters of the long-term pain in the formalin test, as compared with the prenatally stressed females. The comparative analysis of the response parameters allows suggesting the greater damage in males, then in females, of the inhibition process in the descending inhibitory system modulating nociceptive signals at the spinal cord level.  相似文献   

16.
Here we report the new drug design and synthesis of a series of 6,14-endoethenomorphinan-7-carboxamide derivatives as a putative epsilon opioid receptor agonist. One of these compounds, 17-(cyclopropylmethyl)-4,5alpha-epoxy-3,6beta-dihydroxy-6,14-endoethenomorphinan-7alpha-(N-methyl-N-phenethyl)carboxamide (TAN-821), showed agonistic activity for a putative epsilon opioid receptor (IC(50) = 71.71nM) in the rat vas deferens (RVD) preparations. TAN-821 stimulated the binding of the nonhydrolyzable guanosine 5'-triphosphate analog, guanosine 5'-(gamma-thio)-triphosphate (GTPgammaS), to the mouse pons/medulla membrane via the activation of putative epsilon opioid receptor. Moreover, TAN-821 given intracerebroventricularly (i.c.v.) produced a marked antinociception in the tail-flick test (ED(50) = 1.73 microg) and the hot-plate test (ED(50) = 2.05 microg) in a dose-dependent manner. The antinociception induced by TAN-821 administered i.c.v. was blocked by the i.c.v.-pretreatment with a putative epsilon opioid receptor partial agonist beta-endorphin [1-27], but not a mu opioid receptor antagonist beta-FNA, a delta opioid receptor antagonist NTI, or a kappa opioid receptor antagonist nor-BNI. The present results suggest that TAN-821 may be a useful tool for the investigation on the pharmacological properties of the putative epsilon opioid receptor.  相似文献   

17.
本研究旨在了解弓状核内的阿片受体在体温调节中的作用。研究使用细胞介素IL1β做致热源。以自动推进器向SD雄性大鼠弓状核微量注射1μ1IL1β。在给药前30min分别向弓状核微量注射通常阿片受体拮抗剂纳洛酮(Nal)、阿片受体μ、δ和κ各自特异性拮抗剂CTAP、NTI和norBNI做预处理,用生理盐水(Sal)做对照。结果表明:IL1β所致的升体温效应能被Nal和CTAP阻断,提示弓状核中的阿片受体(主要是μ受体)参与或介导了IL1β的致热效应;δ和κ受体特异性拮抗剂阻断IL1β所致的体温升高效应不明显。提示δ和κ阿片受体参与体温调节的可能性较小。对照ARH和POAH中阿片受体在IL1β所致发热中的作用可发现:二者作用极为相似,这一结果有力地支持了弓状核是体温调节中枢重要组成部分的观点。  相似文献   

18.
Wu GJ  Chen ZQ 《生理学报》1999,51(1):49-54
为探索尾核(caudatenucleus,Cd)是否参与电针及皮层体感运动Ⅰ区(sensorimotorareaⅠofthecerebralcortex,SmⅠ)对束旁核(parafascicularnucleus,Pf)神经元伤害性反应的调节,以及Cd中阿片受体是否参与并通过何种受体参与这一调节,本实验用Cd头部化学毁损及微量注射阿片受体拮抗剂的方法,观察到Cd毁损前电针及兴奋皮层均可抑制Pf的伤害性反应,而毁损后这种抑制效应消失;注射纳洛酮或阿片μ受体拮抗剂βFNA后,电针及兴奋皮层SmⅠ区对Pf伤害性反应的抑制作用被取消,而分别注射δ和κ受体拮抗剂ICI174,864和norBNI则不产生影响。基于已证明大脑皮层参与电针对Pf伤害性反应的调节,本结果提示:Cd参与针刺镇痛中皮层SmⅠ区对Pf神经元伤害性反应的抑制,Cd中阿片肽主要通过μ受体参与抑制作用。  相似文献   

19.
The aim of the present study was to explore the possible role of kappa/dynorphin system in the development of tolerance to nicotine antinociception in mice. First, we observed that kappa-opioid receptor (KOP-r) participates in the acute spinal antinociception produced by nicotine (3 and 5 mg/kg, s.c.) since the pre-treatment with the selective kappa antagonist nor-binaltorphimine (3 mg/kg, i.p.) attenuated this response in the tail-immersion test but not in the hot-plate test nor in locomotor responses. Possible changes in the expression of KOP-r were investigated in tolerant mice to nicotine antinociception by using autoradiography of [3H]CI-977 binding. The density of KOP-r decreased in the spinal cord of tolerant mice. In addition, bi-directional cross-tolerance between nicotine (3 and 5 mg/kg, s.c.) and the selective kappa agonist U50,488H (10 mg/kg, s.c.) was found in the tail-immersion test. Recent evidences indicate that an up-regulation of dynorphin levels in the spinal cord and subsequent activation of NMDA receptors participate in the development of tolerance to opioid and cannabinoid antinociception. In this study, dynorphin content in the lumbar spinal cord was similar in control and nicotine tolerant mice. Furthermore, the administration of the NMDA antagonist MK-801 (0.03 and 0.01 mg/kg, i.p.) before each daily nicotine injection did not modify the development of nicotine tolerance. In summary, these data indicate that KOP-r is directly involved in the development of tolerance to nicotine antinociception by a mechanism independent from dynorphin and NMDA receptors.  相似文献   

20.
Intracerebroventricular injection of kappa-opioid agonists produces diuresis, antinatriuresis, and a concurrent increase in renal sympathetic nerve activity (RSNA). The present study examined whether endogenous central kappa-opioid systems contribute to the renal excretory responses produced by the stress of an acute hypotonic saline volume expansion (HSVE). Cardiovascular, renal excretory, and RSNA responses were measured during control, acute HSVE (5% body weight, 0.45 M saline over 30 min), and recovery (70 min) in conscious rats pretreated intracerebroventricularly with vehicle or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). In vehicle-pretreated rats, HSVE produced a marked increase in urine flow rate but only a low-magnitude and delayed natriuresis. RSNA was not significantly suppressed during the HSVE or recovery periods. In nor-BNI-treated rats, HSVE produced a pattern of diuresis similar to that observed in vehicle-treated rats. However, during the HSVE and recovery periods, RSNA was significantly decreased, and urinary sodium excretion increased in nor-BNI-treated animals. In other studies performed in chronic bilateral renal denervated rats, HSVE produced similar diuretic and blunted natriuretic responses in animals pretreated intracerebroventricularly with vehicle or nor-BNI. Thus removal of the renal nerves prevented nor-BNI from enhancing urinary sodium excretion during HSVE. These findings indicate that in conscious rats, endogenous central kappa-opioid systems are activated during hypotonic saline volume expansion to maximize urinary sodium retention by a renal sympathoexcitatory pathway that requires intact renal nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号