首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo Z  Xing R  Liu S  Zhong Z  Ji X  Wang L  Li P 《Carbohydrate research》2007,342(10):1329-1332
Schiff bases of chitosan, N-substituted chitosan, and quaternized chitosan were synthesized and their antifungal properties were analyzed against Botrytis cinerea Pers. (B. cinerea pers.) and Colletotrichum lagenarium (Pass) Ell.et halst (C. lagenarium (Pass) Ell.et halst) based on the method of D. Jasso de Rodríguez and co-workers. The results showed that quaternized chitosan had better inhibitory properties than chitosan, Schiff bases of chitosan, and N-substituted chitosan.  相似文献   

2.
Quaternized chitosan derivatives with different molecular weights were synthesized in the laboratory. Subsequent experiments were conducted to test their antifungal activities against Botrytis cinerea Pers. (B. cinerea pers.) and Colletotrichum lagenarium (Pass) Ell.et halst (C. lagenarium (Pass) Ell.et halst). Our results indicate that quaternized chitosan derivatives have stronger antifungal activities than chitosan. Furthermore, quaternized chitosan derivatives with high molecular weight are shown to have even stronger antifungal activities than those with low molecular weight.  相似文献   

3.
The one-pot synthesis and characterization of cross-linked quaternized chitosan microspheres (CQCM) as a protein adsorbent are presented. First of all, chitosan particles were prepared by spray drying method, and then they were quaternized and cross-linked in turn with glycidyltrimethylammonium (GTMAC) chloride and glutaraldehyde in isopropanol containing 10% water in one-pot. The effect of the reaction temperature, reaction time and the amounts of added GTMAC and glutaraldehyde on the protein adsorption ability of CQCM was investigated. The adsorption behavior of the CQCM prepared in the optimum synthetic conditions was well described by the Langmuir isotherm with maximum adsorption capacity equal to 1424 mg BSA/g dry weight. The particle size ranged from 7.6 to 48.9 μm. The mechanism of adsorption-desorption of BSA to the CQCM was ion-exchange. Finally, the extraction of soybean peroxidase from crude soybean peroxidase solution using the CQCM was performed.  相似文献   

4.
The methylated N-aryl chitosan derivatives, methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride (MDMCMCh) and methylated N-(4-pyridylmethyl) chitosan chloride (MPyMeCh), were synthesized by two steps, the reductive amination and the methylation. The physicochemical properties of chitosan derivatives were determined by ATR-FTIR, NMR, X-ray diffraction (XRD) and thermogravimetric (TG) techniques. The XRD analysis showed that the crystallinity and thermal stability of methylated chitosan derivatives were lower than those of chitosan. The effects of degree of quaternization (DQ), polymer structure and positive charge location on mucoadhesive property and cytotoxicity were investigated by using a mucin particle method and MTT assay compared to N,N,N-trimethylammonium chitosan chloride (TMChC). It was found that the mucoadhesive property and cytotoxicity increased with increasing DQ. At the DQ of 65%, the mucoadhesive property of the MDMCMCh was twofold lower than that of the TMChC. However, this phenomenon did not affect the mucoadhesive property when the DQ was higher than 65%. Surprisingly, the MPyMeCh showed the lowest toxicity even with the high DQ. These could be due to the resonance effect of the positive charge in the pyridine ring and the molecular weight after methylation. Finally, our result revealed that the mucoadhesive property was dependent on the DQ and polymer structure whereas the cytotoxicity was dependent on the combination of the polymer structure, positive charge location and molecular weight after methylation.  相似文献   

5.
N-substituted chitosan and quaternized chitosan were synthesized and their antioxidant activity against hydroxyl radicals was assessed, respectively. Compared with the antioxidant activity of chitosan, the results indicated that the two kinds of chitosan derivatives had different scavenging ability on hydroxyl radicals, which should be related to the form of amido in the two kinds of chitosan derivatives.  相似文献   

6.
Zhong Z  Xing R  Liu S  Wang L  Cai S  Li P 《Carbohydrate research》2008,343(3):566-570
Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E. coli was 15.62 and 62.49 microg/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50-500 microg/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity.  相似文献   

7.
The 9 quaternary ammonium chitosans containing monosaccharides or disaccharides moieties were successfully synthesized by reductive N-alkylation then quaternized by N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (Quat-188). The chemical structures of quaternary ammonium chitosan derivatives were characterized by ATR-FTIR and 1H NMR spectroscopy. The degree of N-substitution (DS) and the degree of quaternization (DQ) were determined by 1H NMR spectroscopic method. It was found that the DS was in the range of 12–40% while the DQ was in the range of 90–97%. The results indicated that the O-alkylation was occured in this condition. Moreover, all quaternary ammonium chitosan derivatives were highly water-soluble at acidic, basic, and neutral pH. Minimum inhibitory concentration (MIC) antibacterial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria compared to quaternary ammonium N-octyl and N-benzyl chitosan derivatives. The quaternary ammonium mono and disaccharide chitosan derivatives showed very high MIC values which were in the range of 32 to >256 μg/mL against both bacteria. Also it was found that the antibacterial activity decreased with increasing the DS. This was due to the increased hydrophilicity of mono and disaccharide moieties. On the other hand, the low MIC values (8–32 μg/mL) were obviously observed when the DS of quaternary ammonium N-octyl and N-benzyl chitosan derivatives was lower than 18%. The results showed that the presence of hydrophobic moiety such as the N-benzyl group enhanced the antibacterial activity compared to the hydrophilic moiety against both bacteria.  相似文献   

8.
Ionizing radiation and oxidizing agent like H2O2 were used to degrade chitosan (CS) and its derivatives; N-maleoylchitosan (NMCS), and N-phthaloylchitosan (NPhCS). The structure changes were detected using gel permeation chromatography (GPC). The results revealed that ionizing radiation degraded CS, MNCS, NPhCS and altered their molecular weights and antioxidant activity. The higher the irradiation dose, the lower the molecular weight and the higher antioxidant activity. The addition of irradiated CS and NMCS to minced chicken resulted in highly significant reduction in malondialdehyde (MDA) content (50 and 70%, respectively) if compared with the control. The irradiated NMCS toxicity study did not show strong proliferative effect at small concentrations or cytotoxic effects at higher concentrations. The obtained results suggested that CS and NMCS could be used as natural antioxidant for improving the oxidative deterioration of minced chicken during refrigerated storage.  相似文献   

9.
Chitosan-N-trimethylaminoethylmethacrylate chloride (CS-TM) copolymers with different quaternization degrees (DQ, 30 and 50%) were synthesized and further modified with methoxypoly(ethylene glycol) (mPEG) of different molecular weights (MW, 2 and 5 kDa). The hydrophilicity of the resulting copolymers was significantly increased as evidenced by decreased contact angles. PEGylation with higher mPEG MW could significantly reduce the hemolytic potential, protein adsorption, cytotoxicity and intestinal mucosal damage of CS-TM (DQ of 50%, CS-TM50). PEGylation resulted in a considerable increase in the release of reducing sugars following 84-day lysozyme-catalyzed degradation, and an increase in mPEG MW led to a faster degradation of CS-TM50. The antioxidant activity of CS-TM50 was superior to that of PEGylated CS-TM50, exhibiting dose-dependent reducing power and lipid peroxidation inhibition effect. In conclusion, quaternization and subsequent PEGylation of CS with rational modification degree of its free amino group will be a potential strategy for the development of biocompatible and biodegradable CS derivatives.  相似文献   

10.
Superoxide anion scavenging activity of graft chitosan derivatives   总被引:9,自引:0,他引:9  
Two kinds of graft chitosan derivatives (CMCTS-g-MAS and HPCTS-g-MAS) were prepared by the graft copolymerization of maleic acid sodium onto etherified chitosans-carboxymethyl chitosan (CMCTS) and hydroxypropyl chitosan (HPCTS), respectively. Superoxide anion scavenging activity of the derivatives was evaluated in a luminal-enhanced autoxidaton of pyrogallol by chemiluminescence techniques. Compared with chitosan, the graft chitosan derivatives have much improved scavenging ability against superoxide anion. They have similar 50% inhibition concentrations (IC50s) as ascorbic acid and superoxide dismutase (SOD). Graft chitosan derivatives with hydroxypropyl groups have relatively higher superoxide anion scavenging ability owing to the incorporation of hydroxyl groups. The graft chitosan derivatives (HPCTS-g-MAS 1, 2, and 3) with different grafting percentages exhibit IC50s values ranging from 243 to 308 μg/mL, which could be related to the contents of active hydroxyl and amino groups in the polymer chains.  相似文献   

11.
Chitosan derivatives are obtained by reaction of chitosan with a low degree of acetylation and levulinic acid under different experimental conditions. The chemical structure of the different derivatives obtained is determined using 1H and 13C NMR spectroscopies. The intrinsic viscosity is used to follow the molecular weight evolution. Finally, conditions are described in which water-soluble N-carboxybutylchitosan is obtained. In particular, the time of the reduction step and the ratio between reagents are investigated. Under mild conditions and short times of reduction there is a very low degree of substitution and only the monocarboxybutylchitosan is formed. The dicarboxylated form is never observed. The cyclic derivative (5-methylpyrrolidinone chitosan) is obtained when the reducing agent is added slowly to the reactants.  相似文献   

12.
Fully subtituted di-O-acetyl-N-acetylchitosan (chitin diacetate) has been prepared by a route in which the hydroxyl groups are acetylated prior to N-acetylation. This overcomes the previously reported intramolecular steric hindrance to esterification caused by the N-acetamido group. The resultant products were of high viscosity but had a limited solubility range. Di-O-acrylcarbamate derivatives of N-acetylchitosan (chitin) have been produced by a similar route, whilst di-O-arylcarbamate-N-arylureidochitosans have been prepared directly from chitosan. These products also have limited solubility ranges and have inherent viscosities similar to that of di-O-acetylchitosan prepared from the same batch of chitosan.  相似文献   

13.
The aim of this study was to evaluate the potential dental applications of chitosan (CS) and N-[1-hydroxy-3-(trimethylammonium)propyl]chitosan chloride (HTCC). HTCC was prepared by reacting CS with glycidyltrimethylammonium chloride (GTMAC). CS and HTCC were characterized by infrared (FITR) and 1H NMR spectroscopy. The antibacterial activity of CS and HTCC against oral pathogens, their proliferation activity and effects on the ultrastructure of human periodontal ligament cells (HPDLCs) were investigated. The results indicated that four oral strains were susceptible to CS and HTCC with minimum inhibitory concentrations (MICs) ranging from 0.25 to 2.5 mg/mL. The in vitro 3-(4,5-dimethyl-2-thizolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay determined that CS at 2000, 1000, 100, and 50 μg/mL could stimulate the proliferation of HPDLCs. Instead, HTCC inhibited the proliferation at the same concentrations but accelerated the proliferation of HPDLCs at relatively low concentrations (10, 3, 1.5, 1, and 0.3 μg/mL). Transmission electron microscopy (TEM) observations revealed that the ultra-architecture of HPDLC was seriously destroyed by HTCC treatment at 1000 μg/mL. Taken together, these results contribute information necessary to enhance our understanding of CS and HTCC in the dental field.  相似文献   

14.
Various quaternized chitosans (QCSs) were synthesized according to previous method. Their reducing power and antioxidant potency against hydroxyl radicals (OH) and hydrogen peroxide (H2O2) were explored by the established systems in vitro. The QCSs exhibited markedly antioxidant activity, especially TCEDMCS, whose IC50 on hydroxyl radicals was 0.235 mg/mL. They showed 65–80% scavenging effect on hydrogen peroxide at a dose of 0.5 mg/mL. Generally, the antioxidant activity decreased in the order TCEDMCS > TBEDMCS > EDMCS > PDMCS > IBDMCS > Chitosan. Furthermore, the order of their OH and H2O2 scavenging activity was consistent with the electronegativity of different substituted groups in the QCSs. The QCSs showed much stronger antioxidant activity than that of chitosan may be due to the positive charge density of the nitrogen atoms in QCSs strengthened by the substituted groups.  相似文献   

15.
A novel fiber-reactive chitosan derivative was synthesized in two steps from a chitosan of low molecular weight and low degree of acetylation. First, a water-soluble chitosan derivative, N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride (HTCC), was prepared by introducing quaternary ammonium salt groups on the amino groups of chitosan. This derivative was further modified by introducing functional (acrylamidomethyl) groups, which can form covalent bonds with cellulose under alkaline conditions, on the primary alcohol groups (C-6) of the chitosan backbone. The fiber-reactive chitosan derivative, O-acrylamidomethyl-HTCC (NMA-HTCC), showed complete bacterial reduction within 20 min at the concentration of 10ppm, when contacted with Staphylococcus aureus and Escherichia coli (1.5-2.5 x 10(5) colony forming units per milliliter [CFU/mL]).  相似文献   

16.
Defect free mats containing a cationic polysaccharide, chitosan derivative such as N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (HTCC), have been prepared using electrospinning of an aqueous solution of poly(vinyl alcohol) (PVA)-HTCC blends. HTCC, a water-soluble derivative of chitosan, was synthesized via the reaction between glycidyl-trimethylammonium chloride and chitosan. Solutions of PVA-HTCC Blends were electrospun. The morphology, diameter and structure of the produced electrospun nanofibres were examined by scanning electron microscopy (SEM). The average fibre diameter was in the range of 200-600 nm. SEM images showed that the morphology and diameter of the nanofibres were mainly affected by weight ratio of the blend and applied voltage. The results revealed that increasing HTCC content in the blends decreases the average fibre diameter. These observations were discussed on the basis of shear viscosities and conductivities of the spinning solutions. Microbiological assessment showed that the PVA-HTCC mats have a good antibacterial activity against Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli.  相似文献   

17.
Chitosan and its derivatives for tissue engineering applications   总被引:23,自引:0,他引:23  
Tissue engineering is an important therapeutic strategy for present and future medicine. Recently, functional biomaterial researches have been directed towards the development of improved scaffolds for regenerative medicine. Chitosan is a natural polymer from renewable resources, obtained from shell of shellfish, and the wastes of the seafood industry. It has novel properties such as biocompatibility, biodegradability, antibacterial, and wound-healing activity. Furthermore, recent studies suggested that chitosan and its derivatives are promising candidates as a supporting material for tissue engineering applications owing to their porous structure, gel forming properties, ease of chemical modification, high affinity to in vivo macromolecules, and so on. In this review, we focus on the various types of chitosan derivatives and their use in various tissue engineering applications namely, skin, bone, cartilage, liver, nerve and blood vessel.  相似文献   

18.
Chemical modification of chitosan by introducing quaternary ammonium moieties into the polymer backbone renders excellent antimicrobial activity to the adducts. In the present study, we have synthesized 17 derivatives of chitosan consisting of a variety of N-aryl substituents bearing either electron-donating or electron-withdrawing groups. Selective N-arylation of chitosan was performed via Schiff bases formed by the reaction between the 2-amino groups of the glucosamine residue of chitosan with aromatic aldehydes under acidic conditions, followed by reduction of the Schiff base intermediates with sodium cyanoborohydride. Each of the derivatives was further quaternized using N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride (Quat-188) as the quaternizing agent that reacted with either the primary amino or hydroxyl groups of the glucosamine residue of chitosan. The resulting quaternized materials were water soluble at neutral pH. Minimum inhibitory concentration (MIC) antimicrobial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria in order to explore the impact of the extent of N-substitution (ES) on their biological activities. At ES less than 10%, the presence of the hydrophobic substituent, such as benzyl and thiophenylmethyl, yielded derivatives with lower MIC values than chitosan Quat-188. Derivatives with higher ES exhibited reduced antibacterial activity due to low quaternary ammonium moiety content. At the same degree of quaternization, all quaternized N-aryl chitosan derivatives bearing either electron-donating or electron-withdrawing substituents did not contribute antibacterial activity relative to chitosan Quat-188. Neither the functional group nor its orientation impacted the MIC values significantly.  相似文献   

19.
壳聚糖及其衍生物抗菌性质的研究进展   总被引:6,自引:0,他引:6  
壳聚糖对多种细菌、真菌具有广谱抗菌的功能,因此它被广泛地应用于广泛地用于口腔疾病、皮肤炎症、伤口感染、胃肠道疾病等各种疾病的治疗。本文综述了壳聚糖及其衍生物对常见的口腔致病菌、皮肤癣菌、伤口感染菌以及胃肠道疾病的致病菌的抗菌作用和壳聚糖及其衍生物的抗菌机理。  相似文献   

20.
The adsorption of Zn(II) ions from aqueous solution by chitosan derivatives (KCTS and HKCTS) was studied in a batch adsorption system. The adsorption capacities and rates of Zn(II) ions onto chitosan derivatives were evaluated. The adsorption isothermal data could be well interpreted by the Langmuir and Freundlich models. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical adsorption is the rate-limiting step. The apparent adsorption activation energy were 25.47 kJ mol and 5.473 kJ mol, respectively, and the second-order adsorption constant for KCTS and HKCTS were 0.00311 g (mg min)−1 and 0.005 g (mg min)−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号