首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses.  相似文献   

2.
Generation of effective CTL responses is the goal of many vaccination protocols. However, to what extant T cell precursor frequencies will generate a CD8+ CTL response has not been elucidated properly. In this study, we employed a model system, in which naive CD4+ and CD8+ T cells derived from ovalbumin (OVA)-specific TCR transgenic OT II and OT I mice were used for adoptive transfer into wild-type, Iab−/− gene knockout and transgenic RIP-mOVA mice, and assessed OVA-pulsed DC (DCOVA)-stimulated CD8+ CTL responses in these mice. We demonstrated that (i) a critical threshold exists above which T cells precursor frequency cannot enhance the CTL responses in wild-type C57BL/6 mice, (ii) increasing CD8+ T cell precursors is required to generate CTL responses but with functional memory defect in absence of CD4+ T cell help, and (iii) increasing CD4+ and CD8+ T cell precursors overcomes immune suppression to DCOVA-stimulated CD8+ CTL responses in transgenic RIP-mOVA mice with OVA-specific self immune tolerance. Taken together, these findings may have important implications for optimizing immunotherapy against cancer.  相似文献   

3.
Enterotoxigenic Escherichia coli (ETEC) infection is the most common type of porcine postweaning colibacillosis (PWC). Among fimbriae of porcine ETEC strains the best studied family of fimbriae are the members of F4 adhesins, existing in at least three variants: ab, ac, ad. Active immunization against porcine PWC is difficult due to: i) ETEC strains are only one of the essential predisposing factors, ii) the success of vaccinal antigen uptake depends on the presence of enterocyte receptors for F4 adhesins, iii) the intestinal immune system may react with tolerance or hypersensitivity to the same antigens depending on the dose and form of the vaccinal immunogen, and iv) kinetics of the specific immune responses may be different in the case of F4 (earlier) and the other ETEC adhesins, particularly F18 (later). The aim of this study was to test the effectiveness of a live attenuated F4ac+ non-ETEC vaccine against porcine PWC by analyzing quantitative differences in the small intestinal lymphoid and myeloid cell subsets of immunized (with or without levamisole given as an adjuvant) vs control non-immunized pigs. Four week-old pigs were intragastrically immunized with a vaccine candidate F4ac + non-ETEC strain 2407 at day 0, challenged 7 days later with a virulent F4ac+ strain ETEC 11-800/1/94, euthanatized at day 13 and sampled for immunohistology. Non-immunized pigs received saline at day 0 and were processed as the principals. Immunophenotypes of lymphoid and myeloid cell subsets were demonstrated within jejunal and ileal mucosa by immunohistochemical avidinbiotin complex method and corresponding morphometric data were analyzed using software program Lucia G for digital image analyses. Monoclonal antibodies reactive with surface molecules on porcine immune cells such as CD3, CD45RA, CD45RC, CD21 and SWC3 enabled clear insight into distribution patterns and amount of these cells within the gut-associated lymphoid tissues (GALT) examined. The numbers of jejunal and ileal cell subsets tested were significantly increased (at P<0.5 or lower) in both principal groups (vaccinated or levamisole primed-vaccinated) of pigs, compared to those recorded in the control non-vaccinated pigs. Based on the histomorphometric quantification of porcine intestinal immune cells from the GALT compartments tested, it is possible to differentiate the responses of pigs immunized by an experimental mucosal vaccine from those of non-immunized pigs.Key words: adjuvanted/nonadjuvanted E. coli vaccine, intestinal immune cells, pigs.  相似文献   

4.
维生素A缺乏影响肠道屏障功能的研究进展   总被引:1,自引:0,他引:1  
维生素A(vitamin A,VA)在维持肠道黏膜上皮屏障功能的完整性、调节黏膜免疫反应以及抗感染中起到重要的作用。肠道相关树突状细胞(dendritic cells,DCs)可表达合成视黄酸(retinoic acid,RA)所必需的酶(retinal dehydrogenase,RALDH),合成RA。RA通过诱导T、B细胞产生整合素α4β7、CCR9,使其归巢到肠道,并提高肠道黏膜sIgA的水平。RA可增强天然CD4+T细胞分化为Foxp3+Treg细胞,抑制Th17细胞的生成。当机体VA缺乏时可降低肠道屏障功能,下调肠道黏膜免疫反应,增加肠道感染性疾病的易感性,容易导致腹泻。针对维生素A在肠道屏障功能的调节作用作一简要概述。  相似文献   

5.
Antigen-presenting cells (APC), like dendritic cells (DC), are essential for T-cell activation, leading to immunity or tolerance. Multiple DC subsets each play a unique role in the immune response. Here, a novel splenic dendritic-like APC has been characterized in mice that has immune function and cell surface phenotype distinct from other, described DC subsets. These were identified as a cell type continuously produced in spleen long-term cultures (LTC) and have an in vivo equivalent cell type in mice, namely ‘L-DC’. This study characterizes LTC-DC in terms of marker phenotype and function, and compares them with L-DC and other known splenic DC and myeloid subsets. L-DC display a myeloid dendritic-like phenotype equivalent to LTC-DC as CD11cloCD11bhiMHC-IICD8α cells, distinct by high accessibility and endocytic capacity for blood-borne antigen. Both LTC-DC and L-DC have strong antigen cross-presentation ability leading to strong activation of CD8+ T cells, particularly after exposure to lipopolysaccharide. However, they have weak ability to stimulate CD4+ T cells in antigen-specific responses. Evidence is presented here for a novel DC type produced by in vitro haematopoiesis which has distinct antigen-presenting potential and reflects a DC subset present also in vivo in spleen.  相似文献   

6.
To maintain immune homeostasis in the intestine, the intestinal immune system has evolved several tolerogenic mechanisms toward intestinal microflora and food antigens. Although programmed cell death-1 (PD-1) protein has been implicated in immunological tolerance in the intestine and gut-associated lymphoid tissues (GALTs), distribution of its ligands PD-L1 and PD-L2 in the small intestine lamina propria (LP) are unknown. We investigated PD-L1 expression in intestinal LP and found that IgA plasma cells (PCs) were major PD-L1 expressing cells. PD-L1 expression levels on IgA PCs were higher than that on IgG PCs in peripheral lymphoid tissues. IgA PCs expressed antigen-presenting molecule MHC class II and co-stimulatory molecules CD80, CD86, and PD-L2. IgA PCs isolated from intestinal LP exhibited antigen presentation activity, and in the presence of TGF-β induced FoxP3+ regulatory T cells, but not IFN-γ+ Th1 cells, from naïve T cells. Thus, IgA PCs in the intestine may be involved in an immune regulatory role in the intestinal immune system.  相似文献   

7.

Background

Currently, sufficient data exist to support the use of lactobacilli as candidates for the development of new oral targeted vaccines. To this end, we have previously shown that Lactobacillus gasseri expressing the protective antigen (PA) component of anthrax toxin genetically fused to a dendritic cell (DC)-binding peptide (DCpep) induced efficacious humoral and T cell-mediated immune responses against Bacillus anthracis Sterne challenge.

Methodology/Principal Finding

In the present study, we investigated the effects of a dose dependent treatment of mice with L. gasseri expressing the PA-DCpep fusion protein on intestinal and systemic immune responses and confirmed its safety. Treatment of mice with different doses of L. gasseri expressing PA-DCpep stimulated colonic immune responses, resulting in the activation of innate immune cells, including dendritic cells, which induced robust Th1, Th17, CD4+Foxp3+ and CD8+Foxp3+ T cell immune responses. Notably, high doses of L. gasseri expressing PA-DCpep (1012 CFU) were not toxic to the mice. Treatment of mice with L. gasseri expressing PA-DCpep triggered phenotypic maturation and the release of proinflammatory cytokines by dendritic cells and macrophages. Moreover, treatment of mice with L. gasseri expressing PA-DCpep enhanced antibody immune responses, including IgA, IgG1, IgG2b, IgG2c and IgG3. L. gasseri expressing PA-DCpep also increased the gene expression of numerous pattern recognition receptors, including Toll-like receptors, C-type lectin receptors and NOD-like receptors.

Conclusion/Significance

These findings suggest that L. gasseri expressing PA-DCpep has substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration and may be used as a safe oral vaccine against anthrax challenge.  相似文献   

8.
Gut-dwelling helminthes induce potent IL-4 and IL-13 dominated type 2 T helper cell (TH2) immune responses, with IL-13 production being essential for Nippostrongylus brasiliensis expulsion. This TH2 response results in intestinal inflammation associated with local infiltration by T cells and macrophages. The resulting increased IL-4/IL-13 intestinal milieu drives goblet cell hyperplasia, alternative macrophage activation and smooth muscle cell hypercontraction. In this study we investigated how IL-4-promoted T cells contributed to the parasite induced effects in the intestine. This was achieved using pan T cell-specific IL-4 receptor alpha-deficient mice (iLckcreIL-4Rα−/lox) and IL-4Rα-responsive control mice. Global IL-4Rα−/− mice showed, as expected, impaired type 2 immunity to N. brasiliensis. Infected T cell-specific IL-4Rα-deficient mice showed comparable worm expulsion, goblet cell hyperplasia and IgE responses to control mice. However, impaired IL-4-promoted TH2 cells in T cell-specific IL-4Rα deficient mice led to strikingly reduced IL-4 production by mesenteric lymph node CD4+ T cells and reduced intestinal IL-4 and IL-13 levels, compared to control mice. This reduced IL-4/IL-13 response was associated with an impaired IL-4/IL-13-mediated smooth muscle cell hypercontractility, similar to that seen in global IL-4Rα−/− mice. These results demonstrate that IL-4-promoted T cell responses are not required for the resolution of a primary N. brasiliensis infection. However, they do contribute significantly to an important physiological manifestation of helminth infection; namely intestinal smooth muscle cell-driven hypercontractility.  相似文献   

9.
The immune system has evolved regulatory mechanisms to control immune responses to self-antigens. Regulatory T (Treg) cells play a pivotal role in maintaining immune tolerance, but tumour growth is associated with local immunosuppression, which can subvert effector immune responses. Indeed, the induction and recruitment of Treg cells by tumours is a major barrier in the development of effective immunotherapeutics and vaccines against cancer. Retinoic acid (RA) has been shown to promote conversion of naïve T cells into Treg cells. This study addresses the hypothesis that blocking RA receptor alpha (RARα) may enhance the efficacy of a tumour vaccine by inhibiting the induction of Treg cells. We found that RA significantly enhanced TGF-β-induced expression of Foxp3 on naïve and committed T cells in vitro and that this was blocked by an antagonist of RARα (RARi). In addition, RARi significantly suppressed TGF-β and IL-10 and enhanced IL-12 production by dendritic cells (DC) in response to killed tumour cells or TLR agonists. Furthermore, RARi augmented the efficacy of an antigen-pulsed and TLR-activated DC vaccine, significantly attenuating growth of B16 tumours in vivo and enhancing survival of mice. This protective effect was associated with significant reduction in tumour-infiltrating FoxP3+ and IL-10+ Treg cells and a corresponding increase in tumour-infiltrating CD4+ and CD8+ T cells that secreted IFN-γ. Our findings demonstrate that RARα is an important target for the development of effective anti-tumour immunotherapeutics and for improving the efficacy of cancer vaccines.  相似文献   

10.
The skin accommodates multiple dendritic cell (DC) subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal) and chicken ovalbumin (OVA) under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC) as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation.  相似文献   

11.

Background

In contrast to intestinal CD4+ regulatory T cells (Tregs), the generation and function of immunomodulatory intestinal CD8+ T cells is less well defined. To dissect the immunologic mechanisms of CD8+ T cell function in the mucosa, reactivity against hemagglutinin (HA) expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied.

Methodology and Principal Findings

HA-specific CD8+ T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3+ and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8+Foxp3+ T cells. Antigen-experienced CD8+ T cells in this transgenic mouse model suppressed the proliferation of CD8+ and CD4+ T cells in vitro. Gene expression analysis of suppressive HA-specific CD8+ T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4+ Treg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8+Foxp3+ T cells.

Conclusion and Significance

We demonstrate that gut specific antigen presentation is sufficient to induce CD8+ Tregs in vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.  相似文献   

12.
13.
CD8+ T cell-mediated cancer clearance is often suppressed by the interaction between inhibitory molecules like PD-1 and PD-L1, an interaction acts like brakes to prevent T cell overreaction under normal conditions but is exploited by tumor cells to escape the immune surveillance. Immune checkpoint inhibitors have revolutionized cancer therapeutics by removing such brakes. Unfortunately, only a minority of cancer patients respond to immunotherapies presumably due to inadequate immunity. Antitumor immunity depends on the activation of the cGAS-STING pathway, as STING-deficient mice fail to stimulate tumor-infiltrating dendritic cells (DCs) to activate CD8+ T cells. STING agonists also enhance natural killer (NK) cells to mediate the clearance of CD8+ T cell-resistant tumors. Therefore STING agonists have been intensively sought after. We previously discovered that manganese (Mn) is indispensable for the host defense against cytosolic dsDNA by activating cGAS-STING. Here we report that Mn is also essential in innate immune sensing of tumors and enhances adaptive immune responses against tumors. Mn-insufficient mice had significantly enhanced tumor growth and metastasis, with greatly reduced tumor-infiltrating CD8+ T cells. Mechanically, Mn2+ promoted DC and macrophage maturation and tumor-specific antigen presentation, augmented CD8+ T cell differentiation, activation and NK cell activation, and increased memory CD8+ T cells. Combining Mn2+ with immune checkpoint inhibition synergistically boosted antitumor efficacies and reduced the anti-PD-1 antibody dosage required in mice. Importantly, a completed phase 1 clinical trial with the combined regimen of Mn2+ and anti-PD-1 antibody showed promising efficacy, exhibiting type I IFN induction, manageable safety and revived responses to immunotherapy in most patients with advanced metastatic solid tumors. We propose that this combination strategy warrants further clinical translation.Subject terms: Pattern recognition receptors, Immunosurveillance  相似文献   

14.
Intestinal homeostasis relies on a continuous dialogue between the commensal bacteria and the immune system. Natural killer T (NKT) cells, which recognize CD1d‐restricted microbial lipids and self‐lipids, contribute to the regulation of mucosal immunity, yet the mechanisms underlying their functions remain poorly understood. Here, we demonstrate that NKT cells respond to intestinal lipids and CD11c+ cells (including dendritic cells (DCs) and macrophages) are essential to mediate lipid presentation within the gut ultimately controlling intestinal NKT cell homeostasis and activation. Conversely, CD1d and NKT cells participate in the control of the intestinal bacteria composition and compartmentalization, in the regulation of the IgA repertoire and in the induction of regulatory T cells within the gut. These changes in intestinal homeostasis require CD1d expression on DC/macrophage populations as mice with conditional deletion of CD1d on CD11c+ cells exhibit dysbiosis and altered immune homeostasis. These results unveil the importance of CD11c+ cells in controlling lipid‐dependent immunity in the intestinal compartment and reveal an NKT cell–DC crosstalk as a key mechanism for the regulation of gut homeostasis.  相似文献   

15.
Peanut allergy (PNA) has becoming a non-negligible health concern worldwide. Thus far, allergen-specific immunotherapy aimed at inducing mucosal tolerance has widely been regarded as a major management strategy for PNA. The safety profiles and the intrinsic probiotic properties of lactic acid bacteria (LAB) render them attractive delivery vehicles for mucosal vaccines. In the present study, we exploited genetically modified Lactococcus lactis to produce peanut allergen Ara h 2 via different protein-targeting systems and their immunomodulatory potency for allergic immune responses in mice were investigated. By comparison with the strain expressing the cytoplasmic form of Ara h 2 (LL1), the strains expressing the secreted and anchored forms of Ara h 2 (LL2 and LL3) were more potent in redirecting a Th2-polarized to a non-allergic Th1 immune responses. Induction of SIgA and regulatory T cells were also observed at the local levels by orally administration of recombinant L. lactis. Our results indicate that allergen-producing L. lactis strains modulated allergic immune responses and may be developed as promising mucosal vaccines for managing allergic diseases.  相似文献   

16.
Intestinal epithelial cells (IECs) compose the first barrier against microorganisms in the gastrointestinal tract. Although the NF-κB pathway in IECs was recently shown to be essential for epithelial integrity and intestinal immune homeostasis, the roles of other inflammatory signaling pathways in immune responses in IECs are still largely unknown. Here we show that p38α in IECs is critical for chemokine expression, subsequent immune cell recruitment into the intestinal mucosa, and clearance of the infected pathogen. Mice with p38α deletion in IECs suffer from a sustained bacterial burden after inoculation with Citrobacter rodentium. These animals are normal in epithelial integrity and immune cell function, but fail to recruit CD4+ T cells into colonic mucosal lesions. The expression of chemokines in IECs is impaired, which appears to be responsible for the impaired T cell recruitment. Thus, p38α in IECs contributes to the host immune responses against enteric bacteria by the recruitment of immune cells.  相似文献   

17.
Infection with Neisseria gonorrhoeae (N. gonorrhoeae) can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa) proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) on CD4+ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1)-specific cytotoxic T-lymphocyte (CTL) responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs) are professional antigen presenting cells (APCs) that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific OpaCEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, OpaCEA binding to CEACAM1 reduced the DCs’ capacity to stimulate an allogeneic T cell proliferative response. Moreover, OpaCEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with OpaCEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain why infection of N. gonorrhoeae fails to trigger an effective specific immune response or develop immune memory, and may affect the potent synergy between gonorrhea and HIV-1 infection.  相似文献   

18.
Dendritic cells (DC) have a key role in controlling the immune response, by determining the outcome of antigen presentation to T cells. Through costimulatory molecules and other factors, DC are involved in the maintenance of peripheral tolerance through modulation of the immune response. This modulation occurs both constitutively, and in inflammation, in order to prevent autoimmunity and to control established immune responses. Dendritic cell control of immune responses may be mediated through cytokine or cell-contact dependent mechanisms. The molecular and cellular basis of these controls is being understood at an increasingly more complex level. This understanding is reaching a level at which DC-based therapies for the induction of immune regulation in autoimmunity can be tested in vivo. This review outlines the current state of knowledge of DC in immune tolerance, and proposes how DC might control both T cell responses, and themselves, to prevent autoimmunity and maintain peripheral tolerance.  相似文献   

19.
A crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC). In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We developed a TCR-restricted assay to compare different pathogen-triggered human DC for their capacities to instruct functional differentiation of autologous, naive CD4+ T cells. We demonstrated that this methodology can be applied to compare differently matured DC in terms of kinetics, direction, and magnitude of the naive CD4+ T cell response. Furthermore, we showed the applicability of this assay to study the T cell polarizing capacity of low-frequency blood-derived DC populations directly isolated ex vivo. This methodology for addressing APC-dependent instruction of naive CD4+ T cells in a human autologous setting will provide researchers with a valuable tool to gain more insight into molecular mechanisms occurring in the early phase of T cell polarization. In addition, it may also allow the study of pharmacological agents on DC-dependent T cell polarization in the human system.  相似文献   

20.
The inside of our gut is inhabited with enormous number of commensal bacteria. The mucosal surface of the gastrointestinal tract is continuously exposed to them and occasionally to pathogens. The gut-associated lymphoid tissue (GALT) play a key role for induction of the mucosal immune response to these microbes1, 2. To initiate the mucosal immune response, the mucosal antigens must be transported from the gut lumen across the epithelial barrier into organized lymphoid follicles such as Peyer''s patches. This antigen transcytosis is mediated by specialized epithelial M cells3, 4. M cells are atypical epithelial cells that actively phagocytose macromolecules and microbes. Unlike dendritic cells (DCs) and macrophages, which target antigens to lysosomes for degradation, M cells mainly transcytose the internalized antigens. This vigorous macromolecular transcytosis through M cells delivers antigen to the underlying organized lymphoid follicles and is believed to be essential for initiating antigen-specific mucosal immune responses. However, the molecular mechanisms promoting this antigen uptake by M cells are largely unknown. We have previously reported that glycoprotein 2 (Gp2), specifically expressed on the apical plasma membrane of M cells among enterocytes, serves as a transcytotic receptor for a subset of commensal and pathogenic enterobacteria, including Escherichia coli and Salmonella enterica serovar Typhimurium (S. Typhimurium), by recognizing FimH, a component of type I pili on the bacterial outer membrane 5. Here, we present a method for the application of a mouse Peyer''s patch intestinal loop assay to evaluate bacterial uptake by M cells. This method is an improved version of the mouse intestinal loop assay previously described 6, 7. The improved points are as follows: 1. Isoflurane was used as an anesthetic agent. 2. Approximately 1 cm ligated intestinal loop including Peyer''s patch was set up. 3. Bacteria taken up by M cells were fluorescently labeled by fluorescence labeling reagent or by overexpressing fluorescent protein such as green fluorescent protein (GFP). 4. M cells in the follicle-associated epithelium covering Peyer''s patch were detected by whole-mount immunostainig with anti Gp2 antibody. 5. Fluorescent bacterial transcytosis by M cells were observed by confocal microscopic analysis. The mouse Peyer''s patch intestinal loop assay could supply the answer what kind of commensal or pathogenic bacteria transcytosed by M cells, and may lead us to understand the molecular mechanism of how to stimulate mucosal immune system through M cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号