首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assay for Baeyer-Villiger monooxygenase (BVMO) enzyme activity has relied to date on the spectrophotometric change observed on the oxidation of the nicotinamide cofactor during the enzymatic reaction. By analogy to the cyclohexanol catabolic pathway of Acinetobacter calcoaceticus NCIMB 9871, we have developed a specific colorimetric screening method that utilises an esterase to cleave the lactone that is formed in the BVMO reaction. When carried out in a non-buffered or weakly buffered system the resultant change in pH can be visually detected. This allows the rapid assaying and screening of BVMO enzymes. This has been demonstrated with cyclohexanone monooxygenase from A. calcoaceticus. The resultant colour change has been visualised with washed cell suspensions, individual bacterial colonies on Petri dishes and with semi-purified recombinant enzyme utilising Linbro dishes.  相似文献   

2.
The assay for Baeyer-Villiger monooxygenase (BVMO) enzyme activity has relied to date on the spectrophotometric change observed on the oxidation of the nicotinamide cofactor during the enzymatic reaction. By analogy to the cyclohexanol catabolic pathway of Acinetobacter calcoaceticus NCIMB 9871, we have developed a specific colorimetric screening method that utilises an esterase to cleave the lactone that is formed in the BVMO reaction. When carried out in a non-buffered or weakly buffered system the resultant change in pH can be visually detected. This allows the rapid assaying and screening of BVMO enzymes. This has been demonstrated with cyclohexanone monooxygenase from A. calcoaceticus. The resultant colour change has been visualised with washed cell suspensions, individual bacterial colonies on Petri dishes and with semi-purified recombinant enzyme utilising Linbro dishes.  相似文献   

3.
Steroid monooxygenase (STMO) from Rhodococcus rhodochrous catalyzes the Baeyer-Villiger conversion of progesterone into progesterone acetate using FAD as prosthetic group and NADPH as reducing cofactor. The enzyme shares high sequence similarity with well characterized Baeyer-Villiger monooxygenases, including phenylacetone monooxygenase and cyclohexanone monooxygenase. The comparative biochemical and structural analysis of STMO can be particularly insightful with regard to the understanding of the substrate-specificity properties of Baeyer-Villiger monooxygenases that are emerging as promising tools in biocatalytic applications and as targets for prodrug activation. The crystal structures of STMO in the native, NADP(+)-bound, and two mutant forms reveal structural details on this microbial steroid-degrading enzyme. The binding of the nicotinamide ring of NADP(+) is shifted with respect to the flavin compared with that observed in other monooxygenases of the same class. This finding fully supports the idea that NADP(H) adopts various positions during the catalytic cycle to perform its multiple functions in catalysis. The active site closely resembles that of phenylacetone monooxygenase. This observation led us to discover that STMO is capable of acting also on phenylacetone, which implies an impressive level of substrate promiscuity. The investigation of six mutants that target residues on the surface of the substrate-binding site reveals that enzymatic conversions of both progesterone and phenylacetone are largely insensitive to relatively drastic amino acid changes, with some mutants even displaying enhanced activity on progesterone. These features possibly reflect the fact that these enzymes are continuously evolving to acquire new activities, depending on the emerging availabilities of new compounds in the living environment.  相似文献   

4.
Whole cells of an Escherichia coli strain overexpressing Acinetobacter sp. NCIB 9871 cyclohexanone monooxygenase (CHMO; E.C. 1.14.13.22) have been used for the Baeyer-Villiger oxidation of representative heterocyclic six-membered ketones to probe the potential impact of nitrogen, sulfur and oxygen on the chemoselectivity of these reactions. The fact that all of these heterocyclic systems were accepted as substrates by the enzyme and gave normal Baeyer-Villiger products broadens the synthetic utility of the engineered E. coli strain and emphasizes the chemoselectivity achievable with enzymatic oxidation catalysts.  相似文献   

5.
An original strategy for universal laboratory testing of Baeyer-Villiger monooxygenases based on continuous packed-bed minireactor connected with flow calorimeter and integrated with bubble-free oxygenation is reported. Model enantioselective Baeyer-Villiger biooxidations of rac-bicyclo[3.2.0]hept-2-en-6-one to corresponding lactones (1R,5S)-3-oxabicyclo-[3.3.0]oct-6-en-3-one and (1S,5R)-2-oxabicyclo-[3.3.0]oct-6-en-3-one as important chiral synthons for the synthesis of bioactive compounds were performed in the minireactor equipped with a column packed with encapsulated recombinant cells Escherichia coli overexpressing cyclohexanone monooxygenase. The cells were encapsulated in polyelectrolyte complex capsules formed by reaction of oppositely charged polymers utilizing highly reproducible and controlled encapsulation process. Encapsulated cells tested in minireactor exhibited high operational stability with 4 complete substrate conversions to products and 6 conversions above 80% within 14 repeated consecutive biooxidation tests. Moreover, encapsulated cells showed high enzyme stability during 91 days of storage with substrate conversions above 80% up to 60 days of storage. Furthermore, usable thermometric signal of Baeyer-Villiger biooxidation obtained by flow calorimetry using encapsulated cells was utilized for preparatory kinetic study in order to guarantee sub-inhibitory initial substrate concentration for biooxidation tests.  相似文献   

6.
An Escherichia coli-based expression system for the Baeyer-Villiger monooxygenase (BVMO) from Xanthobacter sp. ZL5 was screened for whole-cell-mediated biotransformations. Biooxidation studies included kinetic resolutions and regiodivergent conversions of structurally diverse cycloketones. An extended phylogenetic analysis of the BVMOs currently available as recombinant systems with experimentally determined Baeyer-Villigerase activity showed that the enzyme originating from Xanthobacter sp. ZL5 clusters together with the sequences of bacterial CHMO-type BVMOs. The regio- and enantiopreferences experimentally observed for this enzyme are clearly similar to the biocatalytic performance of cyclohexanone monooxygenase from Acinetobacter as prototype for this group of BVMOs and support our previously reported family grouping.  相似文献   

7.
For the investigation of the NADPH-dependent Baeyer-Villiger monooxygenase MekA from Pseudomonas veronii MEK700, the encoding gene mekA with a C-terminal strep-tag was cloned and expressed under the control of a l-rhamnose inducible promoter from Escherichia coli. The mekA gene was found by analyzing the methylethylketone (MEK) degradation pathway by Onaca et al. J Bacteriol 189:3759–3767, 2007. Sequence analysis of the corresponding protein, which catalyzes the Baeyer-Villiger oxidation of MEK to ethyl acetate, showed two binding sites (Rossman-fold motifs) for cofactors NAD(P)H and FAD. Although expression of mekA resulted in large amounts of inclusion bodies compared to soluble protein, high amounts of purified and active MekA were obtained by affinity chromatography. The substrate spectrum of MekA was investigated with purified enzyme and whole cells using a variety of aliphatic, aromatic, and cyclic ketones including four chiral substrates. The specific activity of MekA with MEK as substrate was determined to be 1.1 U/mg protein. K M values were determined for MEK and the cofactors NADPH and NADH to be 6, 11, and 29 μM, respectively.  相似文献   

8.
An efficient synthesis of 12-hetero steroids was achieved via a Baeyer-Villiger oxidation and a photolysis as the key steps. We set out to describe in this paper the first synthesis of 12-aza steroids. The characteristic 1H and 13C NMR spectroscopic features of the synthesized compounds are reported.  相似文献   

9.
拜耳-维立格单加氧酶是一类可以催化酮生成酯以及硫等杂原子氧化的黄素依赖的单加氧酶,在合成化学和生物催化等工业领域有重要的应用前景。本文总结了微生物次生代谢产物生物合成途径中涉及的拜耳-维立格反应,讨论了其反应的特点和催化这些反应的拜耳-维立格单加氧酶的氨基酸序列特征,为拜耳-维立格单加氧酶的蛋白质工程改造提供参考。  相似文献   

10.
The gene encoding a Baeyer-Villiger monooxygenase and identified in Pseudomonas putida KT2440 was cloned and functionally expressed in Escherichia coli. The highest yield of soluble protein could be achieved by co-expression of molecular chaperones. In order to determine the substrate specificity, biocatalyses were performed using crude cell extract, growing and resting cells. Examination of aromatic, cyclic and aliphatic ketones revealed a high specificity towards short-chain aliphatic ketones. Interestingly, some open-chain ketones were converted to the alkylacetates, while for others formation of the ester products with oxygen on the other side of the keto group could also be detected yielding the corresponding methyl or ethyl esters.  相似文献   

11.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee >99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.  相似文献   

12.
Baeyer-Villiger单加氧酶是一种重要的生物催化剂,可用于合成一系列有价值的酯和内酯化合物。通过序列比对和晶体结构分析推测连接NADPH结构域和FAD结构域的一段非保守Hinge可能在酶对底物识别和催化氧化过程中扮演着重要角色。在以环己酮单加氧酶为模型的研究中发现,对该Hinge结构进行同源序列替换得到的突变体几乎完全丧失了催化活性,证明了其整体水平的重要性。丙氨酸扫描突变揭示其中一些位点对酶的功能有显著影响:K153位点的改变使酶的活性下降,立体选择性却更优化;L143位点的改变对酶的活性影响较小,却降低了立体选择性;L144位点的改变则同时大幅度削弱酶的活性和立体选择性。将同样的方法运用在苯丙酮单加氧酶中,我们得到了相似的结论,证明这些位点的重要功能在Baeyer-Villiger单加氧酶家族中有一定的普遍性。这一研究增进了对Baeyer-Villiger单加氧酶的结构与功能关系的认识,有助于底物结合口袋的精确描述和Baeyer-Villiger单加氧酶催化图景的进一步细化,对未来相关的理性设计和定向改造研究提供了借鉴。  相似文献   

13.
The photosynthetic light reaction in cyanobacteria constitutes a highly attractive tool for productive biocatalysis, as it can provide redox reactions with high-energy reduction equivalents using sunlight and water as sources of energy and electrons, respectively. Here, we describe the first artificial light-driven redox cascade in Synechocystis sp. PCC 6803 to convert cyclohexanone to the polymer building block 6-hydroxyhexanoic acid (6-HA). Co-expression of a Baeyer-Villiger monooxygenase (BVMO) and a lactonase, both from Acidovorax sp. CHX100, enabled this two-step conversion with an activity of up to 63.1 ± 1.0 U/gCDW without accumulating inhibitory ε-caprolactone. Thereby, one of the key limitations of biocatalytic reactions, that is, reactant inhibition or toxicity, was overcome. In 2 L stirred-tank-photobioreactors, the process could be stabilized for 48 h, forming 23.50 ± 0.84 mm (3.11 ± 0.12 g/L) 6-HA. The high specificity enabling a product yield (YP/S) of 0.96 ± 0.01 mol/mol and the remarkable biocatalyst-related yield of 3.71 ± 0.21 g6-HA/gCDW illustrate the potential of producing this non-toxic product in a synthetic cascade. The fine-tuning of the energy burden on the catalyst was found to be crucial, which indicates a limitation by the metabolic capacity of the cells possibly being compromised by biocatalysis-related reductant withdrawal. Intriguingly, energy balancing revealed that the biotransformation could tap surplus electrons derived from the photosynthetic light reaction and thereby relieve photosynthetic sink limitation. This study shows the feasibility of light-driven biocatalytic cascade operation in cyanobacteria and highlights respective metabolic limitations and engineering targets to unleash the full potential of photosynthesis.  相似文献   

14.
Biocatalytic tools for both end-of-the-pipe solutions and direct reaction methodology have been developed for the improvement of practical oxidations. The identification of bottlenecks and limitations in biocatalytic Baeyer-Villiger oxidations, and the comparison of scalable process designs to overcome these limitations, have shown the direction for improvements. The first kilogram-scale asymmetric microbial Baeyer-Villiger oxidation with optimized productivity has been realized by the combination of a resin-based in-situ SFPR strategy together with micro-bubble aeration. Regioselective asymmetric dihydroxylation of aromatic nitriles has been achieved by recombinant chlorobenzenedioxygenase. The introduction of novel biocatalytic tools for key catalytic asymmetric transformations will change chemical manufacturing in the 21st century.  相似文献   

15.
Summary The regio- and stereoselective biotransformation of bicyclo (3. 2. 0) hept-2-en-6-one by the NADH-dependent Baeyer-Villiger monooxygenase from camphorgrownPseudomonas putida NCIMB 10007 has been shown to yield a chiral lactone not accessible by curently-used biocatalysts. The biotransformation can be conductedin vitro using two alternative coupled enzyme systems (alcohol dehydrogenase and monooxygenase: formate dehydrogenase and monooxygenase) within situ recycling of NAD+/NADH.  相似文献   

16.
mRNA differential display has been used to identify cyclohexanone oxidation genes in a mixed microbial community derived from a wastewater bioreactor. Thirteen DNA fragments randomly amplified from the total RNA of an enrichment subculture exposed to cyclohexanone corresponded to genes predicted to be involved in the degradation of cyclohexanone. Nine of these DNA fragments are part of genes encoding three distinct Baeyer-Villiger cyclohexanone monooxygenases from three different bacterial species present in the enrichment culture. In Arthrobacter sp. strain BP2 and Rhodococcus sp. strain Phi2, the monooxygenase is part of a gene cluster that includes all the genes required for the degradation of cyclohexanone, while in Rhodococcus sp. strain Phi1 the genes surrounding the monooxygenase are not predicted to be involved in this degradation pathway but rather seem to belong to a biosynthetic pathway. Furthermore, in the case of Arthrobacter strain BP2, three other genes flanking the monooxygenase were identified by differential display, demonstrating that the repeated sampling of bacterial operons shown earlier for a pure culture (D. M. Walters, R. Russ, H. Knackmuss, and P. E. Rouvière, Gene 273:305-315, 2001) is also possible for microbial communities. The activity of the three cyclohexanone monooxygenases was confirmed and characterized following their expression in Escherichia coli.  相似文献   

17.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee > 99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.  相似文献   

18.
EtaA is a newly identified FAD-containing monooxygenase that is responsible for activation of several thioamide prodrugs in Mycobacterium tuberculosis. It was found that purified EtaA displays a remarkably low activity with the antitubercular prodrug ethionamide. Hinted by the presence of a Baeyer-Villiger monooxygenase sequence motif in the EtaA sequence, we have been able to identify a large number of novel EtaA substrates. It was discovered that the enzyme converts a wide range of ketones to the corresponding esters or lactones via a Baeyer-Villiger reaction, indicating that EtaA represents a Baeyer-Villiger monooxygenase. With the exception of aromatic ketones (phenylacetone and benzylacetone), long-chain ketones (e.g. 2-hexanone and 2-dodecanone) also are converted. EtaA is also able to catalyze enantioselective sulfoxidation of methyl-p-tolylsulfide. Conversion of all of the identified substrates is relatively slow with typical k(cat) values of around 0.02 s(-1). The best substrate identified so far is phenylacetone (K(m) = 61 microM, k(cat) = 0.017 s(-1)). Redox monitoring of the flavin cofactor during turnover of phenylacetone indicates that a step in the reductive half-reaction is limiting the rate of catalysis. Intriguingly, EtaA activity could be increased by one order of magnitude by adding bovine serum albumin. This reactivity and substrate acceptance-profiling study provides valuable information concerning this newly identified prodrug activator from M. tuberculosis.  相似文献   

19.
The NADH plus FMN-dependent luciferase from Photobacterium phosphoreum NCIMB 844 has been shown to act as a Baeyer-Villiger monooxygenase able to perform regio-, and where relevant, enantioselective biotransformations of various xenobiotic aliphatic and alicyclic ketones by nucleophilic oxygenation. The useful lactone (−)-(1S,5R)-2-oxabicyclo [3.3.0]oct-6-en-3-one was produced with high optical purity (> 95% ee). A similar biotransformation was recorded with the equivalent luciferase from Vibrio fischeri ATCC 7744.  相似文献   

20.
The pathway oxoaverantin (OAVN) → averufin (AVR) → hydroxyversicolorone (HVN) → versiconal hemiacetal acetate (VHA) is involved in aflatoxin biosynthesis, and the cypX and moxY genes, which are present in the aflatoxin gene cluster, have been previously suggested to be involved in this pathway. To clarify the function of these two genes in more detail, we disrupted the genes in aflatoxigenic Aspergillus parasiticus NRRL 2999. The cypX-deleted mutant lost aflatoxin productivity and accumulated AVR in the mycelia. Although this mutant converted HVN, versicolorone (VONE), VHA, and versiconol acetate (VOAc) to aflatoxins in feeding experiments, it could not produce aflatoxins from either OAVN or AVR. The moxY-deleted mutant also lost aflatoxin productivity, whereas it newly accumulated HVN and VONE. In feeding experiments, this mutant converted either VHA or VOAc to aflatoxins but did not convert OAVN, AVR, HVN, or VONE to aflatoxins. These results demonstrated that cypX encodes AVR monooxygenase, catalyzing the reaction from AVR to HVN, and moxY encodes HVN monooxygenase, catalyzing a Baeyer-Villiger reaction from HVN to VHA as well as from VONE to VOAc. In this work, we devised a simple and rapid method to extract DNA from many fungi for PCR analyses in which cell disruption with a shaker and phenol extraction were combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号