首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sharma PK  Kumar R  Kumar R  Mohammad O  Singh R  Kaur J 《Gene》2012,491(2):264-271
A highly thermostable mutant lipase was generated and characterized. Mutant enzyme demonstrated 144 fold enhanced thermostability over the wild type enzyme at 60 °C. Interestingly, the overall catalytic efficiency (kcat/Km) of mutant was also enhanced (~ 20 folds). Circular dichroism spectroscopy, studied as function of temperature, demonstrated that the mutant lipase retained its secondary structure up to 70-80 °C, whereas wild type protein structure was completely distorted above 35 °C. Additionally, the intrinsic tryptophan fluorescence (a probe for the tertiary structure) also displayed difference in the conformation of two enzymes during temperature dependent unfolding. Furthermore, mutation N355K resulted in extensive H-bonding (Lys355 HZ1OE2 Glu284) with a distance 2.44 Å. In contrast to this, Wt enzyme has not shown such H-bonding interaction.  相似文献   

2.
The effect of temperature-induced changes in secondary and tertiary structures of plasmid DNA (pDNA) and on the retention behaviour of open circular (oc) and supercoiled (sc) isoforms in histidine-agarose chromatography was investigated by Circular dichroism (CD) spectroscopy. Chromatographic experiments performed with three plasmids (2.7, 6.1 and 7.4 kbp) and with a decreasing ammonium sulphate gradient (2.3--2.0 M) showed that the retention of sc pDNA increased as temperature decreased from 24 to 5 °C. Such behaviour was attributed to the temperature-induced removal of negative superhelical turns in sc pDNA which is accompanied by a decrease in the number of dissociated base pairs responsible for interaction with the histidine ligands. CD spectroscopy showed that temperature has an important effect on plasmid secondary structure if adenine-rich inserts are present in the plasmid structure. Chromatographic experiments also suggested that base composition could also be responsible for the induction of specific interactions with histidine ligands.  相似文献   

3.
Glucose oxidase (GOx) from Penicillium amagasakiense has a higher specific activity than the more commonly studied Aspergillus niger enzyme, and may therefore be preferred in many medical and industrial applications. The enzyme rapidly inactivates on storage at pH 7.0-7.6 at temperatures between 30 and 40 °C. Results of fluorimetry and circular dichroism spectroscopy indicate that GOx inactivation under these conditions is associated with release of the cofactor FAD and molten globule formation, indicated by major loss of tertiary structure but almost complete retention of secondary structure. Inactivation of GOx at pH < 7 leads to precipitation, but at pH ≥ 7 it leads to non-specific formation of small soluble aggregates detectable by PAGE and size-exclusion chromatography (SEC). Inactivation of P. amagasakiense GOx differs from that of A. niger GOx in displaying complete rather than partial retention of secondary structure and in being promoted rather than prevented by NaCl. The contrasting salt effects may reflect differences in the nature of the interface between subunits in the native dimers and/or the quantity of secondary structure loss upon inactivation.  相似文献   

4.
To understand the pressure-adaptation mechanism of deep-sea enzymes, we studied the effects of pressure on the enzyme activity and structural stability of dihydrofolate reductase (DHFR) of the deep-sea bacterium Moritella profunda (mpDHFR) in comparison with those of Escherichia coli (ecDHFR). mpDHFR exhibited optimal enzyme activity at 50 MPa whereas ecDHFR was monotonically inactivated by pressure, suggesting inherent pressure-adaptation mechanisms in mpDHFR. The secondary structure of apo-mpDHFR was stable up to 80 °C, as revealed by circular dichroism spectra. The free energy changes due to pressure and urea unfolding of apo-mpDHFR, determined by fluorescence spectroscopy, were smaller than those of ecDHFR, indicating the unstable structure of mpDHFR against pressure and urea despite the three-dimensional crystal structures of both DHFRs being almost the same. The respective volume changes due to pressure and urea unfolding were − 45 and − 53 ml/mol at 25 °C for mpDHFR, which were smaller (less negative) than the corresponding values of − 77 and − 85 ml/mol for ecDHFR. These volume changes can be ascribed to the difference in internal cavity and surface hydration of each DHFR. From these results, we assume that the native structure of mpDHFR is loosely packed and highly hydrated compared with that of ecDHFR in solution.  相似文献   

5.
Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions. A much larger tLRAT activity has been obtained compared to previous reports and to an enzyme with a similar activity. In addition, tLRAT is able to hydrolyze phospholipids bearing different chain lengths with a preference for micellar aggregated substrates. It therefore presents an interfacial activation property, which is typical of classical phospholipases. Furthermore, given that stability is a very important quality of an enzyme, the influence of different parameters on the activity and stability of tLRAT has thus been studied in detail. For example, storage buffer has a strong effect on tLRAT activity and high enzyme stability has been observed at room temperature. The thermostability of tLRAT has also been investigated using circular dichroism and infrared spectroscopy. A decrease in the activity of tLRAT was observed beyond 70 °C, accompanied by a modification of its secondary structure, i.e. a decrease of its α-helical content and the appearance of unordered structures and aggregated β-sheets. Nevertheless, residual activity could still be observed after heating tLRAT up to 100 °C. The results of this study highly improved our understanding of this enzyme.  相似文献   

6.
Palladium(II) complexes, [Pd(GX-azb)2Cl2] (where azb = azobenzene, GX = benzyl-aryl ether dendron of generation X = 1, 2, 3), were prepared and their photophysical properties were examined. The synthesized complexes were characterized by chemical analysis, 1H NMR and UV spectroscopy. The photochromic dendritic azobenzene ligands within the complexes [Pd(GX-azb)2Cl2] undergo a reversible trans/cis isomerization upon exposure to ultraviolet light.  相似文献   

7.
The effect of 1R-camphor on the conformational stability of the heme active site of cytochrome P450cam has been investigated. The absorption spectra of the heme moiety showed the presence of two hitherto unknown intermediates formed at low urea concentrations or during small temperature perturbations. The corresponding thermodynamic parameters were obtained by global fitting of the experimental data to a generalized sequential unfolding model at different wavelengths, which showed that the active conformation of the enzyme is stabilized by binding of the substrate at the active site. Circular-dichroism spectra of the enzyme in the visible- and far-UV region were studied to identify the critical range of denaturant concentration and the temperature at which the tertiary structure around the heme center was affected with almost no change in the secondary structure of the enzyme. This critical range of urea concentration was 0–2.8 M in the presence of camphor and 0–1.5 M in the absence of camphor. The tertiary structure of the enzyme was found to undergo conformational change in the temperature range 20–60 °C in the presence of the substrate and 20–47 °C in its absence. The spectral assignments of the intermediate species of the heme active site with the intact secondary structure of the enzyme were made by deconvolution of the Soret absorption spectra, and the results were analyzed to determine stabilization of the heme active-site geometry by 1R-camphor. Results showed that subtle conformational changes due to melting of the tertiary contacts in the active site lead to formation of intermediates which are coordinatively similar to the native enzyme. Analogous intermediate species might be responsible for leakage in the redox catalytic cycle of the enzyme.  相似文献   

8.
The transition of the holo-form of bovine α-lactalbumin from the native (N) to the pH-generated acidic-state (A-state) was analyzed by probing its tertiary and secondary structure using a concerted spectroscopic approach combining near- and far-UV circular dichroism (CD), electrospray ionization ion mobility mass spectrometry (ESI-IM-MS), vibrational circular dichroism (VCD), and Fourier transform infrared spectroscopy (FTIR) in the attenuated total reflection (ATR) and transmission (TR) modes. The spectroscopic results, which relied on the interaction of an electromagnetic field with different molecular targets, confirmed the decay of extensive rigid side-chain packing interactions during the pH-induced N → A-state transition and revealed the targets' dependence on secondary structural changes. Independent analyses of the spectral changes using two methods of multivariate analysis, such as principal component analysis and two-dimensional correlation spectroscopy, revealed small but significant differences in the secondary structure as a result of the all-or-none transition. The cooperativity of the transition was quantitatively described using values corresponding to the mid-point (tm) and width of the transition (Δtm). The averages of the two parameters, calculated using the data collected by the different probes, were equal to 3.5 ± 0.2 and 0.6 ± 0.1(SE), respectively. The variable two-state nature of the cooperative N → A-state transition confirmed that the protonation of the side chain carboxyl groups on the Asp and Glu residues and that the release of a Ca2 + ion induced structural changes on both the secondary and tertiary levels. The changes have been confirmed by results obtained from the concerted spectroscopic approach.  相似文献   

9.
Controlled thermolysis of gold(I) complex with no use of solvent was investigated as a novel synthetic method of gold nanoparticles. A series of precursors, ammonium gold(I) thiolate [RN(CH3)3][Au(SC12H25)2] (R = C8H17, C12H25, and C14H29) and [(C18H37)2N(CH3)2][Au(SC12H25)2], have been prepared and the thermolysis of those precursors was conducted at 180 °C for 5 h under an N2 atmosphere, providing spherical gold nanoparticles stabilized by alkyl groups derived from the precursor, gold(I) complex. In spite of thermolysis process, the average diameter of gold nanoparticles deriving from [C12H25N(CH3)3][Au(SC12H25)2] was 22 nm, but the size distribution ranges from 11 to 76 nm. For the purpose of the size regulation of the gold nanoparticles, equimolar primary, secondary, or tertiary alkylamines are added as stabilizer and mild reductant to the controlled thermolysis of gold(I) complex at lower temperature of 165 °C for 5 h. The gold nanoparticles obtained by the controlled thermolysis in the presence of stearylamine are well regulated and almost monodispersed nanoparticles with average diameter of 7.5 nm. Such size regulation resulted from the inhibition of the growth of gold nuclei by transforming reaction from ammonium and thiolate moieties to neutral tertiary amine, thiol and sulfide, which function as stabilizer for gold nanoparticles.  相似文献   

10.
Acylpeptide hydrolase, a new class the serine-type peptidase, belongs to the , hydrolase group of proteins. The tetrameric enzyme showed varying degree of stability in the presence of 1–8 M urea. The enzyme displayed about 15% of its original activity when treated with 8 M urea for 1 h at 25°C. Complete recovery of the enzyme activity was observed on dialysis or dilution (50-fold) of the denatured enzyme. However, complete abolition of the enzyme activity was observed in the presence of 1 M GnHCl. Dialysis of the 1 M GnHCl-treated enzyme resulted in 15–20% recovery of the enzyme activity. The fluorescence emission spectra of the native enzyme at 337 nm showed a red shift up to 16 nm in 8 M urea and 18 nm in the presence of 4 M GnHCl. Native enzyme during far-UV circular dichroism spectroscopy exhibited predominantly -sheet structure. The enzyme lost its secondary structure at urea concentrations of 2 M and higher, whereas the tertiary structure was minimally perturbed below 4 M urea. However, in 1 M GnHCl the enzyme lost both its secondary and tertiary structures and the enzyme was found to dissociate into monomers of 70 kDa. Both monomeric and dimeric species were observed after 24-h dialysis of the enzyme denatured with GnHCl indicating the reassociation process. Both monomer and dimers forms recovered after dialysis were active.  相似文献   

11.
Hemocyanin (Hc) is a type-3 copper protein, containing dioxygen-binding active sites consisting of paired copper atoms. In the present study the thermal unfolding of the Hc from the marine mollusc Rapana thomasiana (RtH) has been investigated by combining differential scanning calorimetry, Fourier transform infrared (FTIR) and UV–vis absorption spectroscopy. Two important stages in the unfolding pathway of the Hc molecule were discerned. A first event, with nonmeasurable heat absorption, occurring around 60 °C, lowers the binding of dioxygen to the type-3 copper groups. This pretransition is reversible and is ascribed to a slight change in the tertiary structure. In a second stage, with midpoint around 80 °C, the protein irreversibly unfolds with a loss of secondary structure and formation of amorphous aggregates. Experiments with the monomeric structural subunits, RtH1 and RtH2, indicated that the heterogeneity in the process of thermal denaturation can be attributed to the presence of multiple 50 kDa functional units with different stability. In accordance, the irreversible unfolding of a purified functional unit (RtH2-e) occurred at a single transition temperature. At slightly alkaline pH (Tris buffer) the C-terminal β-sheet rich domain of the functional unit starts to unfold before the α-helix-rich N-terminal (copper containing) domain, triggering the collapse of the global protein structure. Even around 90 °C some secondary structure is preserved as shown by the FTIR spectra of all investigated samples, confirming the high thermostability of molluscan Hc.  相似文献   

12.
Here, we describe the fabrication of an electrochemical immunoglobulin E (IgE) aptasensor using enzyme-linked aptamer in the sandwich assay method and thionine as redox probe. In this protocol, 5′-amine-terminated IgE aptamer and thionine were covalently attached on glassy carbon electrode modified with carbon nanotubes/ionic liquid/chitosan nanocomposite. Furthermore, another IgE aptamer was modified with biotin and enzyme horseradish peroxidase (HRP), which attached to the aptamer via biotin–streptavidin interaction. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were performed at each stage of the chemical modification process to confirm the resulting surface changes. The presence of IgE induces the formation of a double aptamer sandwich structure on the electrode, and the electrocatalytic reduction current of thionine in the presence of hydrogen peroxide was measured as the sensor response. Under optimized conditions and using differential pulse voltammetry as the measuring technique, the proposed aptasensor showed a low detection limit (6 pM) and high sensitivity (1.88 μA nM−1). This aptasensor also exhibited good stability and high selectivity for IgE detection without an interfering effect of some other proteins such as bovine serum albumin (BSA) and lysozyme. The application of the aptasensor for IgE detection in human serum sample was also investigated. The proposed protocol is quite promising as an alternative sandwich approach for various protein assays.  相似文献   

13.
α-Amylase from Sorghum bicolor, is reversibly unfolded by chemical denaturants at pH 7.0 in 50 mM Hepes containing 13.6 mM calcium and 15 mM DTT. The isothermal equilibrium unfolding at 27 °C is characterized by two state transition with ΔG (H2O) of 16.5 kJ mol−1 and 22 kJ mol−1, respectively, at pH 4.8 and pH 7.0 for GuHCl and ΔG (H2O) of 25.2 kJ mol−1 at pH 4.8 for urea. The conformational stability indicators such as the change in excess heat capacity (ΔCp), the unfolding enthalpy (Hg) and the temperature at ΔG = 0 (Tg) are 17.9 ± 0.7 kJ mol−1 K−1, 501.2 ± 18.2 kJ mol1 and 337.3 ± 6.9 K at pH 4.8 and 14.3 ± 0.5 kJ mol−1 K−1, 509.3 ± 21.7 kJ mol−1 and 345.4 ± 4.8 K at pH 7.0, respectively. The reactivity of the conserved cysteine residues, during unfolding, indicates that unfolding starts from the ‘B’ domain of the enzyme. The oxidation of cysteine residues, during unfolding, can be prevented by the addition of DTT. The conserved cysteine residues are essential for enzyme activity but not for the secondary and tertiary fold acquired during refolding of the denatured enzyme. The pH dependent stability described by ΔG (H2O) and the effect of salt on urea induced unfolding confirm the role of electrostatic interactions in enzyme stability.  相似文献   

14.
Germanium tetra(tertiary butoxide), [Ge(OtBu)4], has been prepared by the reaction of GeCl4 with KOBut in benzene. It is a monomeric crystalline solid having a distorted tetrahedral configuration, defined by the coordination of four OBut groups around germanium atom. The TG analysis showed that the compound is thermally stable and volatilizes at around 130 °C. Europium doped and un-doped germanium oxide nanoparticles were prepared based on the urea hydrolysis of Ge(OtBu)4/Eu(OOCCH3)3 in ethylene glycol medium at 150 °C followed by heating the resulting product at 750 °C. The nanoparticles were characterized by XRD, TEM and PL measurements. The europium doped nanoparticles, which were nearly monodispersed (∼30 nm), showed luminescence and the Eu3+ ions were occupying the surface of the GeO2 nanoparticles.  相似文献   

15.
An electrochemical immunosensor for quantitative detection of α-fetoprotein (AFP) in human serum was developed using graphene sheets (GS) and thionine (TH) as electrode materials and mesoporous silica nanoparticles (MSNs) loaded with ferroferric oxide (Fe3O4) nanoparticles and horseradish peroxidase (HRP) as labels for signal amplification. In this study, the compound of GS and TH (GS–TH) was used as a substrate for promoting electron transfer and immobilization of primary antibody of AFP (Ab1). MSNs were used as a carrier for immobilization of secondary antibody of AFP (Ab2), Fe3O4, and HRP. The synergistic effect occurred between Fe3O4 and HRP and greatly improved the sensitivity of the immunosensor. This method could detect AFP over a wide concentration range from 0.01 to 25 ng ml−1 with a detection limit of 4 pg ml−1. This strategy may find wide potential application in clinical analysis or detection of other tumor markers.  相似文献   

16.
Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein. By eliminating its C-terminal region, a water soluble truncated version was obtained in our laboratory. Overall conformation of the mutant version resembles the wild-type protein. Considering these data and the fact that the mutant was obtained as an apo-protein, the truncated version is an ideal model to study the interaction between the enzyme and its cofactor. Here, the FAD binding properties of this version were characterized using far-UV circular dichroism (CD), differential scanning calorimetry (DSC), limited proteolysis, and steady-state and dynamic fluorescence spectroscopy. CD spectra, thermal unfolding and DSC profiles did not reveal any major difference in secondary structure between apo- and holo-protein. In addition, digestion site accessibility and tertiary conformation were similar for both proteins, as seen by comparable chymotryptic cleavage patterns. FAD binding to the apo-protein produced a parallel increment of both FAD fluorescence quantum yield and steady-state emission anisotropy. On the other hand, addition of FAD quenched the intrinsic fluorescence emission of the truncated protein, indicating that the flavin cofactor should be closely located to the protein Trp residues. Analysis of the steady-state and dynamic fluorescence data confirms the formation of the holo-protein with a 1:1 binding stoichiometry and an association constant KA = 7.0(± 0.8) × 104 M− 1. Taken together, the FAD–protein interaction is energetically favorable and the addition of FAD is not necessary to induce the enzyme folded state. For the first time, a detailed characterization of the flavin:protein interaction was performed among alternative NADH dehydrogenases.  相似文献   

17.
Summary Unglycosylated recombinant horseradish peroxidase (HRP C*) had a half life of 21 minutes at 65°C compared with only 5 minutes for the plant enzyme (HRP). The half life of HRP C* at 65°C increased by 5-fold following modification with ethylene glycol bis(succinic acid N-hydroxysuccinimide ester). Tolerance to 60% 1,4-dioxan also increased whilst tolerance to 30% dimethylformamide was unchanged.  相似文献   

18.
Magnetic single-enzyme nanoparticles (SENs) encapsulated within a composite inorganic/organic polymer network were fabricated via the surface modification and in situ aqueous polymerization of separate enzyme molecule. The resultant nanoparticles were characterized by transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectrometer and X-ray diffraction (XRD). These particles are almost spherical in shape and have a unique size of about 50 nm in diameter. Electrical and magnetic measurements reveal that the magnetic SENs have a conductivity of 2.7 × 10−3 S cm−1, and are superparamagnetic with a saturation magnetization of 14.5 emu g−1 and a coercive force of 60 Oe. Compared with free enzyme, encapsulated enzyme exhibits a strong tolerance to the variation of solution pH, high temperature, organic solvent and long-term storage, thus showing significantly enhanced enzyme performance and stability.  相似文献   

19.
Nanogels are promising materials as supports for enzyme immobilization. A new hydrogel comprising of methacrylic acid (MAAc) and N-vinyl pyrrolidone (N-VP) and ethyleneglycol dimethacrylate (EGDMA) was synthesized and converted to nanogel by an emulsification method. Nanogel was further functionalized by Curtius azide reaction for use as support for the covalent immobilization of invertase (Saccharomyces cerevisiae). As-prepared or invertase-immobilized nanogel was characterized by FTIR, XRD, TEM and nitrogen analysis. The characterization of both free and the immobilized-invertase were performed using a spectrophotometric method at 540 nm. The values of Vmax, maximum reaction rate, (0.123 unit/mg), km, Michaelis constant (7.429 mol/L) and Ea, energy of activation (3.511 kj/mol) for the immobilized-invertase are comparable with those of the free invertase at optimum conditions (time 70 min, pH 6.0 and temperature 45 °C). The covalent immobilization enhanced the pH and thermal stability of invertase. The immobilized biocatalyst was efficiently reused up to eight cycles.  相似文献   

20.
We constructed a genetic fusion of a single domain antibody (sdAb) with the thermal stable maltose binding protein from the thermophile Pyrococcus furiosus (PfuMBP). Produced in the Escherichia coli cytoplasm with high yield, it proved to be a rugged and effective immunoreagent. The sdAb–A5 binds BclA, a Bacillus anthracis spore protein, with high affinity (KD ∼ 50 pM). MBPs, including the thermostable PfuMBP, have been demonstrated to be excellent folding chaperones, improving production of many recombinant proteins. A three-step purification of E. coli shake flask cultures of PfuMBP–sdAb gave a yield of approximately 100 mg/L highly purified product. The PfuMBP remained stable up to 120 °C, whereas the sdAb–A5 portion unfolded at approximately 68 to 70 °C but could refold to regain activity. This fusion construct was stable to heating at 1 mg/ml for 1 h at 70 °C, retaining nearly 100% of its binding activity; nearly one-quarter (24%) activity remained after 1 h at 90 °C. The PfuMBP–sdAb construct also provides a stable and effective method to coat gold nanoparticles. Most important, the construct was found to provide enhanced detection of B. anthracis Sterne strain (34F2) spores relative to the sdAb–A5 both as a capture reagent and as a detection reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号