首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multifactorial model incorporating temporal trends in its parameters is discussed. The model is a generalization of the tau model of Rice et al. in which the parameters are assumed to be specific functions of time. A special case of this model is fit to data on height, weight, and Quetelet index in 1,067 nuclear families to demonstrate the utility of the approach. The results indicate that there is considerable temporal variation in family resemblance over time for all three traits. For height and Quetelet index, both the transmissibility, comparable to heritability, and residual sibling environmental correlation show temporal changes, while for weight, only the latter exhibits significant trends. Trends were not found in the marital correlation for any of the traits, and only limited evidence was found for trends in the maternal transmission parameter for height. This provides an objective method for evaluating the nature and sources of temporal trends in family resemblance, which can easily be incorporated into the framework of any model-based approach.  相似文献   

2.
The evidence for a major gene for body mass index (BMI) was investigated using complex segregation analysis (POINTER) in 1691 individuals belonging to 432 nuclear families residing in the Chittoor district of Andhra Pradesh, India. Since the BMI is significantly correlated with energy intake (EI) and energy expenditure of activity (EEA), the effects of each were removed from the BMI using regression analysis, and the segregation analysis was repeated on the energy-adjusted BMI. For BMI, a putative major locus could not be ruled out, and the effect (q = 0.25, accounting for 37% of the phenotypic variance) was remarkably similar to that reported in Western populations. After adjusting the BMI for EI and EEA, however, no evidence in support of a major gene could be observed, suggesting either that EI and EEA mediate the expression of the major gene effect on BMI, or that the same major gene may influence both traits. The pleiotropy hypothesis was further explored using a simple bivariate familial correlation model, in which the significance of familial cross-trait correlations (e.g., BMI in parents with BMI as predicted from the energy variables in the offspring) was examined. The cross-trait resemblance between the two measures was significant for all biological relatives, verifying the presence of shared heritable determinants (i.e., the same gene[s] and/or familial environments) accounting for 58% of the covariation. The significant cross-trait spouse correlations further suggested that at least part of the cross-trait resemblance may be due to shared environmental factors. Therefore, we conclude that there is strong evidence for shared genetic effects between BMI and the energy variables.  相似文献   

3.
The multiple regression analyses were undertaken to elucidate the significance and relative importance of different potential determinants of several child development traits (i.e. age at which child 1. turns himself over; 2. sits up; 3. stands up; 4. walks, and 5. cuts his first tooth). Despite the fact that we used a relatively wide gamut of potential determinants (such as parental age, geographic origin, occupation, current residence, or family size) of trait variability, the results of multiple regression analysis (N = 300 families) indicate an almost complete absence of significant factors and studied variables of development. Sibling resemblance component of variance and covariance for five mentioned traits of development and some morphological characters (weight, length and head circumference at day of birth and at 16 months) were studied in 66 families. The transmissibility ("heritability") values for the development traits were small, ranging from 0 ("Turn") to 0.42 ("Walked"). The Findings suggest that there are significant inverse relationship between some of the developmental traits and inborn morphological characters.  相似文献   

4.
Gardner KM  Latta RG 《Molecular ecology》2007,16(20):4195-4209
We review genetic correlations among quantitative traits in light of their underlying quantitative trait loci (QTL). We derive an expectation of genetic correlation from the effects of underlying loci and test whether published genetic correlations can be explained by the QTL underlying the traits. While genetically correlated traits shared more QTL (33%) on average than uncorrelated traits (11%), the actual number of shared QTL shared was small. QTL usually predicted the sign of the correlation with good accuracy, but the quantitative prediction was poor. Approximately 25% of trait pairs in the data set had at least one QTL with antagonistic effects. Yet a significant minority (20%) of such trait pairs have net positive genetic correlations due to such antagonistic QTL 'hidden' within positive genetic correlations. We review the evidence on whether shared QTL represent single pleiotropic loci or closely linked monotropic genes, and argue that strict pleiotropy can be viewed as one end of a continuum of recombination rates where r=0. QTL studies of genetic correlation will likely be insufficient to predict evolutionary trajectories over long time spans in large panmictic populations, but will provide important insights into the trade-offs involved in population and species divergence.  相似文献   

5.
Male guppies (Poecilia reticulata) exhibit extreme phenotypic and genetic variability for several traits that are important to male fitness, and several lines of evidence suggest that resource level affects phenotypic expression of these traits in nature. We tested the hypothesis that genetic variation for male secondary sex traits could be maintained by genotype-specific effects of variable resource levels (genotype-environment interaction). To do this, we measured genetic variation and covariation under two environmental conditions--relatively low and relatively high food availability. We found high levels of genetic variation for most traits, but we only found a significant G x E interaction across food levels for one trait (body size) for one population. The across-environment correlations for size were large and positive, indicating that the reaction norms for size did not cross. We also found that male colour pattern elements had nearly an order of magnitude more genetic variation than did male size. Heritability estimates indicated that Y-linked genes are responsible for some of the genetic variation in male size and colour traits. We discuss implications of these results for theories of the maintenance of genetic variation in male secondary sexual traits in guppies.  相似文献   

6.
The study of continuously varying, quantitative traits is important in evolutionary biology, agriculture, and medicine. Variation in such traits is attributable to many, possibly interacting, genes whose expression may be sensitive to the environment, which makes their dissection into underlying causative factors difficult. An important population parameter for quantitative traits is heritability, the proportion of total variance that is due to genetic factors. Response to artificial and natural selection and the degree of resemblance between relatives are all a function of this parameter. Following the classic paper by R. A. Fisher in 1918, the estimation of additive and dominance genetic variance and heritability in populations is based upon the expected proportion of genes shared between different types of relatives, and explicit, often controversial and untestable models of genetic and non-genetic causes of family resemblance. With genome-wide coverage of genetic markers it is now possible to estimate such parameters solely within families using the actual degree of identity-by-descent sharing between relatives. Using genome scans on 4,401 quasi-independent sib pairs of which 3,375 pairs had phenotypes, we estimated the heritability of height from empirical genome-wide identity-by-descent sharing, which varied from 0.374 to 0.617 (mean 0.498, standard deviation 0.036). The variance in identity-by-descent sharing per chromosome and per genome was consistent with theory. The maximum likelihood estimate of the heritability for height was 0.80 with no evidence for non-genetic causes of sib resemblance, consistent with results from independent twin and family studies but using an entirely separate source of information. Our application shows that it is feasible to estimate genetic variance solely from within-family segregation and provides an independent validation of previously untestable assumptions. Given sufficient data, our new paradigm will allow the estimation of genetic variation for disease susceptibility and quantitative traits that is free from confounding with non-genetic factors and will allow partitioning of genetic variation into additive and non-additive components.  相似文献   

7.
Four external skeletal and three feather dimensions were measured on adult collared flycatchers (Ficedula albicollis) and their adult offspring. By using mid-offspring-midparent regressions, all traits were found to be heritable with an arithmetic mean heritability of 0.46. Heritability estimates from full-sib analyses were about 1.5 times higher (mean 0.67), indicating that variation in traits was affected by shared nest environment among full-sibs. The overall body size as measured by principal component one (PC1) was found to be heritable (h2 = 0.40). However, this multivariate measure of heritability was not significant in offspring-father comparison, while highly so in offspring-mother comparison (h2 = 0.60). Low offspring-father resemblance was evident also in univariate estimates of heritability. Possible causes of this (extra-pair copulations, maternal effects, sex-linked variance) are discussed. Genetic correlations among seven traits were estimated to be low (mean 0.22), and of similar magnitude or higher than phenotypic correlations (mean 0.18). All genetic correlations were positive. Genetic and phenotypic correlations as well as covariances were fairly similar to each other (r = 0.85 and r = 0.87, respectively). Environmental correlations did not follow the pattern of genetic correlations (r = 0.11), but were more similar to phenotypic correlations (r = 0.60). Given the low genetic correlations and moderate heritabilities, the overall conclusion is that the external morphology of collared flycatchers is largely under additive genetic control and that there is a strong potential for evolutionary change in morphology even under complex multivariate selection.  相似文献   

8.
The familial resemblance in blood pressure in Middle Dalmatia, Croatia, has been analyzed using the Path-analytic approach. The sample consisted of 1,126 examinees (526 males and 600 females, aged 17 to 87), inhabitants of the Middle Dalmatia's islands of Brac, Hvar, Korcula and the Peljesac peninsula. The Path analysis was performed with the assumption that each family member (father, mother, offspring 1 and 2) has a latent variable (C) that influences both the blood pressure values (P) and the morphological dimensions significantly correlated with blood pressure (Q). According to the estimates revealed from the most parsimonious models, the diastolic blood pressure has a more pronounced genetic component (h2 = 30-32%) than the systolic blood pressure (h2 = 15%). In contrast to the low intergenerational influences, the members of the same generation showed pronounced effects of shared environment. Common (non-transmitted) offsprings' environment (B) explains 44% of variance of the individual offspring's environment (C) in systolic and 33-35% in diastolic blood pressure. The correlation of father's and mother's environment (u2) was high in the case of diastolic blood pressure (33-44%) but for the systolic blood pressure it was not significantly different from zero. According to the presented results in insular/peninsular population of Middle Dalmatia, family resemblance of systolic and diastolic blood pressure differs. The resemblance is higher in diastolic blood pressure with stronger additive genetic component and stronger environmental and/or genetic component related with morphology. The sources of high heritability of diastolic blood pressure in Middle Dalmatia as well as the sources of high prevalence of hypertension in the same population are the phenomena that might be connected and thus deserve to be further explored in incoming analyses.  相似文献   

9.
This paper examines family resemblance for five anthropometric measurements (height, weight, triceps skinfold, upper arm circumference relaxed [UACR] and flexed [UACF] and for systolic and diastolic blood pressure in a group of adult Caribbean islanders of primarily African ancestry. Six hypotheses about family resemblance are tested by using path analysis and likelihood ratios. Significant intergenerational transmission is found only for height and UACR. For weight, UACF, and diastolic blood pressure, non-transmissible sibling resemblance is the primary component of family resemblance, although significant marital resemblance exists for diastolic blood pressure. Triceps skinfold and systolic blood pressure show no evidence of any family resemblance. Although results for highly heritable traits such as height are comparable to reports from other populations, measurements with a large contribution from common family environment or residual environmental effects, such as triceps skinfold or blood pressure, have much lower family resemblance in this population than in other populations. We hypothesize that this difference is due to the fact that adult children and their parents do not share a common household in this culture and to the presence of major nonfamilial environmental factors contributing to obesity and hypertension in this population.  相似文献   

10.
This paper concerns an analysis of family resemblance for magnesium concentrations, based on data from nuclear families and twins. Neither red blood cell magnesium nor plasma magnesium varies with age in children (under 20 years of age). Whereas adult plasma magnesium varies linearly with age, the red cell magnesium clearly showed a nonlinear trend: quadratic for males and a fifth-degree polynomial for females. Transformed magnesium concentrations generated six correlations in nuclear families and twins for each of the two traits. Separate univariate analyses, using a simple linear model with four parameters, strongly suggested that genetic factors are primarily responsible for the observed family resemblance. Both traits were then analyzed simultaneously using a simple bivariate model. We found that one common genetic factor alone could not explain all the 24 correlations generated for the bivariate analysis. The most parsimonious model involved only three parameters: genetic heritability for red blood cell magnesium (.922 +/- .014), genetic heritability for plasma magnesium (.721 +/- .040), and the genetic correlation between the two traits (.233 +/- .040).  相似文献   

11.
Secondary sexual characters are thought to indicate individual quality. Expression of sex-limited traits in an extravagant state may require both the underlying genes and the available nutrient resources. The assessment of the relative contribution of genes, environment, and body condition is relevant for understanding to that extent the extravagant trait may signal genotypic or phenotypic quality of the individual. In birds, usually only the males are ornamented. In the barn owl, Tyto alba, both females and males display sex-limited plumage traits. Males are commonly lighter colored and females spottier. In an experiment with combined cross-fostering and brood size manipulation we determined the relative contribution of genes, environment, and body condition to the variation in plumage coloration and plumage spottiness. The partial cross-fostering experiment tested the relative importance of shared genes and a shared environment for the resemblance of related birds. Siblings raised in different nests converged toward similar trait values, offspring resembled the true but not the foster parents, and plumage traits of unrelated nestlings sharing the same nest were not correlated. Results were not inflated by maternal effects detectable in the mother's phenotype, because middaughter to mother resemblance was not higher than midson to father resemblance. This suggests that plumage coloration and spottiness are largely genetically inherited traits, and that the rearing environment does not have a strong impact on the expression of these traits. To further investigate whether the two sex-limited traits are condition dependent, brood sizes were manipulated. Enlargement or reduction of broods by two nestlings resulted in lower and higher body mass of nestlings, respectively. However, nestlings raised in enlarged or reduced broods did not show either a significantly darker or lighter or a more or less spotted plumage. We did not detect any genotype-by-environment interaction. In conclusion, simultaneous cross-fostering and brood size manipulation demonstrate that additive genetic variance for plumage coloration and spottiness is maintained and that both the rearing environment and body condition do not account for a large proportion of the phenotypic variance in female and male ornamentations.  相似文献   

12.
Atopic dermatitis and psoriasis are the two most common immune-mediated inflammatory disorders affecting the skin. Genome-wide studies demonstrate a high degree of genetic overlap, but these diseases have mutually exclusive clinical phenotypes and opposing immune mechanisms. Despite their prevalence, atopic dermatitis and psoriasis very rarely co-occur within one individual. By utilizing genome-wide association study and ImmunoChip data from >19,000 individuals and methodologies developed from meta-analysis, we have identified opposing risk alleles at shared loci as well as independent disease-specific loci within the epidermal differentiation complex (chromosome 1q21.3), the Th2 locus control region (chromosome 5q31.1), and the major histocompatibility complex (chromosome 6p21–22). We further identified previously unreported pleiotropic alleles with opposing effects on atopic dermatitis and psoriasis risk in PRKRA and ANXA6/TNIP1. In contrast, there was no evidence for shared loci with effects operating in the same direction on both diseases. Our results show that atopic dermatitis and psoriasis have distinct genetic mechanisms with opposing effects in shared pathways influencing epidermal differentiation and immune response. The statistical analysis methods developed in the conduct of this study have produced additional insight from previously published data sets. The approach is likely to be applicable to the investigation of the genetic basis of other complex traits with overlapping and distinct clinical features.  相似文献   

13.
Increasing evidence shows that one variant can affect multiple traits, which is a widespread phenomenon in complex diseases. Joint analysis of multiple traits can increase statistical power of association analysis and uncover the underlying genetic mechanism. Although there are many statistical methods to analyse multiple traits, most of these methods are usually suitable for detecting common variants associated with multiple traits. However, because of low minor allele frequency of rare variant, these methods are not optimal for rare variant association analysis. In this paper, we extend an adaptive combination of P values method (termed ADA) for single trait to test association between multiple traits and rare variants in the given region. For a given region, we use reverse regression model to test each rare variant associated with multiple traits and obtain the P value of single-variant test. Further, we take the weighted combination of these P values as the test statistic. Extensive simulation studies show that our approach is more powerful than several other comparison methods in most cases and is robust to the inclusion of a high proportion of neutral variants and the different directions of effects of causal variants.  相似文献   

14.
Hypercoagulation often occurs in type 2 diabetes, suggesting pleiotropy of the genes that influence disease liability and hemostasis-related phenotypes. To better understand the relationship between hemostasis and diabetes, we first used maximum-likelihood methods to estimate the relative contribution of additive genetic, measured environmental, and shared household effects to the normal variance of 16 hemostasis-related traits in 813 individuals participating in the San Antonio Family Heart Study. We estimated moderate to high heritabilities (0.20-0.60) for each phenotype. Von Willebrand factor (VWF), thrombin activatable fibrinolysis inhibitor, activated protein C (APC) ratio, factor V, and prothrombin time had heritabilities greater than 0.50. The correlation between type 2 diabetes status and the hemostasis-related traits was then partitioned into genetic and environmental components using bivariate variance-components methods. Significant (p < or = 0.05) positive genetic correlations (0.37-0.51) occurred with factors II and VIII, VWF, total protein S (tPS), and tissue factor pathway inhibitor. Significant negative genetic correlations were estimated for activated partial thromboplastin time (-0.49) and APC ratio (-0.38). By contrast, significant environmental correlations occurred only with factor II (-0.40) and tPS (-0.31). Our results suggest that genes are important contributors to the normal variation in hemostasis-related traits and that genes influencing hemostasis-related traits pleiotropically influence diabetes risk.  相似文献   

15.
Cross-trait resemblance between body fat and blood pressure (BP) was examined among families in the Québec Family Study by using a bivariate familial correlation model assessing both intraindividual (e.g., comparison of father's body fat with his own BP) and interindividual (e.g., comparison of father's body fat with son's BP) cross-trait correlations. Each of six body-fat measures-(i) percent body fat, (ii) body-mass index, (iii) the sum of six skinfolds, (iv) the ratio of the sum of six skinfolds to total fat mass, (v) the ratio of the trunk skinfold sum to the extremity skinfold sum, and (vi) the regression of the trunk-extremity skinfold ratio on the sum of six skinfolds--was analyzed separately with systolic BP and with diastolic BP. Results showed that (1) upper-body fat was the strongest interindividual correlate of BP (especially the correlation of trunk-extremity ratio with diastolic BP), suggesting shared pleiotropic genetic and/or common familial environmental effects; (2) summary body-fat measures either were inconsistent (in the case of both percent body fat and sum of six skinfolds) or gave no evidence of interindividual cross-trait resemblance with BP (in the case of body-mass index); and (3) intraindividual resemblance between the sum of six skinfolds and BP largely vanished once the skinfold sum was adjusted for fat mass, suggesting that the intraindividual association may be mediated largely by the absolute amount of subcutaneous fat rather than by the subcutaneous proportion. Finally, the magnitude of the spouse resemblance for the trunk-extremity ratio with diastolic BP suggests that a significant proportion of the resemblance may be due to environmental influences. In summary, our investigation confirms a heritable link between BP and truncal-abdominal fat as predicted by the metabolic-syndrome hypothesis. That this result is obtained in primarily normotensive, nonobese families, suggests the connection involves normal metabolic paths.  相似文献   

16.
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t''V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups.  相似文献   

17.
Understanding how evolutionary and ecological processes shape species interaction networks remains as one of the main challenges in eco-evolutionary studies. Here, we present an integrative analytical framework to partition the effects of phylogenies and functional traits on the structure of ecological networks. The method combines fuzzy set theory and matrix correlation, implemented under a Monte Carlo framework. We designed a simulation study in order to estimate the accuracy of the methods proposed here, measuring Type I Error rates. The simulation study shows that the method is accurate, i.e., incorrectly rejecting a true null hypothesis in ~5% of the cases and falling within the confidence interval. We illustrate our framework using data from a seed dispersal network from southern Brazil. Our analyses suggest that birds must have specific traits in order to consume their plant resources, and that phylogenetic resemblance has no explanatory power for species traits and species interactions in this seed-dispersal network.  相似文献   

18.
We examined sex differences in familial resemblance for a broad range of behavioral, psychiatric and health related phenotypes (122 complex traits) in children and adults. There is a renewed interest in the importance of genotype by sex interaction in, for example, genome-wide association (GWA) studies of complex phenotypes. If different genes play a role across sex, GWA studies should consider the effect of genetic variants separately in men and women, which affects statistical power. Twin and family studies offer an opportunity to compare resemblance between opposite-sex family members to the resemblance between same-sex relatives, thereby presenting a test of quantitative and qualitative sex differences in the genetic architecture of complex traits. We analyzed data on lifestyle, personality, psychiatric disorder, health, growth, development and metabolic traits in dizygotic (DZ) same-sex and opposite-sex twins, as these siblings are perfectly matched for age and prenatal exposures. Sample size varied from slightly over 300 subjects for measures of brain function such as EEG power to over 30,000 subjects for childhood psychopathology and birth weight. For most phenotypes, sample sizes were large, with an average sample size of 9027 individuals. By testing whether the resemblance in DZ opposite-sex pairs is the same as in DZ same-sex pairs, we obtain evidence for genetic qualitative sex-differences in the genetic architecture of complex traits for 4% of phenotypes. We conclude that for most traits that were examined, the current evidence is that same the genes are operating in men and women.  相似文献   

19.
Maternal effects, either environmental or genetic in origin, are an underappreciated source of phenotypic variance in natural populations. Maternal genetic effects have the potential to constrain or enhance the evolution of offspring traits depending on their magnitude and their genetic correlation with direct genetic effects. We estimated the maternal effect variance and its genetic component for 12 traits expressed over the life history in a pedigreed population of wild red deer (morphology, survival/longevity, breeding success). We only found support for maternal genetic effect variance in the two neonatal morphological traits: birth weight ( = 0.31) and birth leg length ( = 0.17). For these two traits, the genetic correlation between maternal and direct additive effects was not significantly different from zero, indicating no constraint to evolution from genetic architecture. In contrast, variance in maternal genetic effects enhanced the additive genetic variance available to respond to natural selection. Maternal effect variance was negligible for late-life traits. We found no evidence for sex differences in either the direct or maternal genetic architecture of offspring traits. Our results suggest that maternal genetic effect variance declines over the lifetime, but also that this additional heritable genetic variation may facilitate evolutionary responses of early-life traits.  相似文献   

20.
There is increasing evidence that pleiotropy, the association of multiple traits with the same genetic variants/loci, is a very common phenomenon. Cross-phenotype association tests are often used to jointly analyze multiple traits from a genome-wide association study (GWAS). The underlying methods, however, are often designed to test the global null hypothesis that there is no association of a genetic variant with any of the traits, the rejection of which does not implicate pleiotropy. In this article, we propose a new statistical approach, PLACO, for specifically detecting pleiotropic loci between two traits by considering an underlying composite null hypothesis that a variant is associated with none or only one of the traits. We propose testing the null hypothesis based on the product of the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic in the form of a mixture distribution that allows for fractions of variants to be associated with none or only one of the traits. We borrow approaches from the statistical literature on mediation analysis that allow asymptotic approximation of the null distribution avoiding estimation of nuisance parameters related to mixture proportions and variance components. Simulation studies demonstrate that the proposed method can maintain type I error and can achieve major power gain over alternative simpler methods that are typically used for testing pleiotropy. PLACO allows correlation in summary statistics between studies that may arise due to sharing of controls between disease traits. Application of PLACO to publicly available summary data from two large case-control GWAS of Type 2 Diabetes and of Prostate Cancer implicated a number of novel shared genetic regions: 3q23 (ZBTB38), 6q25.3 (RGS17), 9p22.1 (HAUS6), 9p13.3 (UBAP2), 11p11.2 (RAPSN), 14q12 (AKAP6), 15q15 (KNL1) and 18q23 (ZNF236).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号