首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major challenge in systems biology is to understand how complex and highly connected metabolic networks are organized. The structure of these networks is investigated here by identifying sets of metabolites that have a similar biosynthetic potential. We measure the biosynthetic potential of a particular compound by determining all metabolites than can be produced from it and, following a terminology introduced previously, call this set the scope of the compound. To identify groups of compounds with similar scopes, we apply a hierarchical clustering method. We find that compounds within the same cluster often display similar chemical structures and appear in the same metabolic pathway. For each cluster we define a consensus scope by determining a set of metabolites that is most similar to all scopes within the cluster. This allows for a generalization from scopes of single compounds to scopes of a chemical family. We observe that most of the resulting consensus scopes overlap or are fully contained in others, revealing a hierarchical ordering of metabolites according to their biosynthetic potential. Our investigations show that this hierarchy is not only determined by the chemical complexity of the metabolites, but also strongly by their biological function. As a general tendency, metabolites which are necessary for essential cellular processes exhibit a larger biosynthetic potential than those involved in secondary metabolism. A central result is that chemically very similar substances with different biological functions may differ significantly in their biosynthetic potentials. Our studies provide an important step towards understanding fundamental design principles of metabolic networks determined by the structural and functional complexity of metabolites.  相似文献   

2.
Arabidopsis thaliana is a successful model plant for studying wide‐ranging topics including plant development, genetics and pathogen resistance. In addition, significant research has been conducted in the area of secondary metabolite biochemical genetics. The secondary metabolites in Arabidopsis include glucosinolates, terpenoids, phenylpropanoids, the alkaloid‐like camalexin, and other uncharacterized compounds. The genetic tools developed in studying secondary metabolite biochemistry are now being used to study how secondary metabolites control various biological processes. This includes compounds involved in plant/insect and plant/pathogen interactions, compounds preventing UV‐B damage, and compounds involved in hormone homeostasis. This review will describe what light Arabidopsis is shedding on the biological and ecological importance of specific secondary metabolites.  相似文献   

3.
4.
Aminocoumarin antibiotics are natural products of soil-dwelling bacteria called Streptomycetes. They are potent inhibitors of DNA gyrase, an essential bacterial enzyme and validated drug target, and thus have attracted considerable interest as potential templates for drug development. To date, aminocoumarins have not seen widespread clinical application on account of their poor pharmacological properties. Through studying the structures and mechanisms of enzymes from their biosynthetic pathways we will be better informed to redesign these compounds through rational pathway engineering. Novobiocin, the simplest compound, requires at least seventeen gene products to convert primary metabolites into the mature antibiotic. We have solved the crystal structures of four diverse biosynthetic enzymes from the novobiocin pathway, and used these as three-dimensional frameworks for the interpretation of functional and mechanistic data, and to speculate about how they might have evolved. The structure determinations have ranged from the routine to the challenging, necessitating a variety of different approaches.  相似文献   

5.
Analytical methods for marker compounds formed during post-translational modifications of proteins are reviewed. Only adducts arising either in vivo or under in vitro conditions simulating the in vivo situations are discussed. All of these compounds stem from either the reaction of free amino groups (i.e., lysine, arginine or N-terminal amino acid). In most cases the reactive counterpart is an aldehydic moiety containing endogenous compound; however, other functional groups containing metabolites are considered as well. The main demand put upon such marker compounds is that they are stable in acid or enzymatic hydrolysis or, alternatively, can be stabilized by simple sample pretreatment (e.g., by reduction). Practically all categories of separation procedures can be applied provided that the chemical characteristics of a particular marker are adequately respected; frequently combination of two different separation procedures based on different principles must be used. Because of the low level of such marker compounds under in vivo conditions, an appropriate sample enrichment step must be involved. Emphasis is put upon the analysis of Amadori products, pentosidine (and pentosidine related compounds), pyrraline, furosine, N-carboxymethylamino acids, amino acid hydantoins and stabilized dicarbonyl intermediates  相似文献   

6.
Cuticular waxes coat aerial plant surfaces to protect tissues against biotic and abiotic stress. The waxes are complex mixtures of fatty-acid-derived lipids formed on modular biosynthetic pathways, with varying chain lengths and oxygen functional groups. The waxes of most plant species contain C26–C32 alcohols, aldehydes, alkanes, and fatty acids together with their alkyl esters, and comparisons between diverse wax mixtures have revealed matching chain length distributions between some of these compound classes. Based on such patterns, the biosynthetic pathways leading to the ubiquitous wax constituents were hypothesized early on, and most of these pathway hypotheses have since been confirmed by biochemical and molecular genetic studies in model species. However, the most abundant wax compounds on many species, including many important crop species, contain secondary functional groups and thus their biosynthesis differs at least in part from the ubiquitous wax compounds with which they co-occur. Here, we survey the chemical structures of these species-specific specialty wax compounds based on a comprehensive CAS SciFinder search and then review relevant reports on wax compositions to help develop and refine hypotheses for their biosynthesis. Across the plant kingdom, specialty wax compounds with one, two, and three secondary functional groups have been identified, with most studies focusing on Angiosperms. Where multiple specialty wax compounds were reported, they frequently occurred as homologous series and/or mixtures of isomers. Among these, it is now possible to recognize series of homologs with predominantly odd- or even-numbered chain lengths, and mixtures of isomers with functional groups on adjacent or on alternating carbon atoms. Using these characteristic molecular geometries of the co-occurring specialty compounds, they can be categorized and, based on the common structural patterns, mechanisms of biosynthesis may be predicted. It seems highly likely that mixtures of isomers with secondary functions on adjacent carbons arise from oxidation catalyzed by P450 enzymes, while mixtures of isomers with alternating group positions are formed by malonate condensation reactions mediated by polyketide synthase or ketoacyl-CoA synthase enzymes, or else by the head-to-head condensation of long-chain acyls. Though it is possible that some enzymes leading to ubiquitous compounds also participate in specialty wax compound biosynthesis, comparisons between co-occurring ubiquitous and specialty wax compounds strongly suggest that, at least in some species, dedicated specialty wax compound machinery exists. This seems particularly true for the diverse species in which specialty wax compounds, most notably nonacosan-10-ol, hentriacontan-16-one (palmitone), and very-long-chain β-diketones, accumulate to high concentrations.  相似文献   

7.
While a number of approaches have been geared toward multiple sequence alignments, to date there have been very few approaches to multiple structure alignment and detection of a recurring substructural motif. Among these, none performs both multiple structure comparison and motif detection simultaneously. Further, none considers all structures at the same time, rather than initiating from pairwise molecular comparisons. We present such a multiple structural alignment algorithm. Given an ensemble of protein structures, the algorithm automatically finds the largest common substructure (core) of C(alpha) atoms that appears in all the molecules in the ensemble. The detection of the core and the structural alignment are done simultaneously. Additional structural alignments also are obtained and are ranked by the sizes of the substructural motifs, which are present in the entire ensemble. The method is based on the geometric hashing paradigm. As in our previous structural comparison algorithms, it compares the structures in an amino acid sequence order-independent way, and hence the resulting alignment is unaffected by insertions, deletions and protein chain directionality. As such, it can be applied to protein surfaces, protein-protein interfaces and protein cores to find the optimally, and suboptimally spatially recurring substructural motifs. There is no predefinition of the motif. We describe the algorithm, demonstrating its efficiency. In particular, we present a range of results for several protein ensembles, with different folds and belonging to the same, or to different, families. Since the algorithm treats molecules as collections of points in three-dimensional space, it can also be applied to other molecules, such as RNA, or drugs.  相似文献   

8.
MOTIVATION: The lack of new antimicrobials, combined with increasing microbial resistance to old ones, poses a serious threat to public health. With hundreds of genomes sequenced, systems biology promises to help in solving this problem by uncovering new drug targets. RESULTS: Here, we propose an approach that is based on the mapping of the interactions between biochemical agents, such as proteins and metabolites, onto complex networks. We report that nodes and links in complex biochemical networks can be grouped into a small number of classes, based on their role in connecting different functional modules. Specifically, for metabolic networks, in which nodes represent metabolites and links represent enzymes, we demonstrate that some enzyme classes are more likely to be essential, some are more likely to be species-specific and some are likely to be both essential and specific. Our network-based enzyme classification scheme is thus a promising tool for the identification of drug targets. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

9.
Plant taxonomy based on molecular phylogenetic study and/or chemosystematics study has become increasingly important in exploring and utilizing medicinal resources due to the advent of big data era. In this study, we proposed a classifying approach combining DNA and chemical metabolites for the prediction of new medicinal resources. Specifically, we obtained 104 ITS2 barcodes and 847 chemical metabolites from 104 species in Ranunculaceae. Then, phylogenetic tree based on the ITS2 barcode and clustering tree based on structural similarity of metabolites were separately constructed. In addition, we tested the classifying accuracy of the two methods by Baker`s correlation coefficient and the result showed that phylogenetic tree based on the ITS2 barcode was more accurate, giving a higher score of 0.627, whereas clustering tree based on chemical metabolites obtained a lower score of 0.301. Therefore, the natural products of plants might be described using these clades found by ITS2-based methods, and thus new metabolites of plants might be predicted due to the close relationships in a given clade. Using this combined method, 53 plants with structurally similar metabolites were included in 9 plant groups and currently unknown species-metabolite relations were predicted. Finally, 26.92% species in Ranunculaceae were found to contain the predicted metabolites after verification using two alternative KNApSAcKCore and ChEBI databases. As a whole, the combined approach can successfully classify plants and predict specialized natural products based on plant taxa.  相似文献   

10.
When Apiocrea chrysosperma is incubated with progesterone for 7 days in a peptone, yeast-extract medium, eight major metabolites are produced. Each compound has been purified and its structure determined by high-field 1D and 2D 1H nuclear magnetic resonance (NMR) spectroscopy. A clear synthetic pattern is recognisable. The products have been formed by multiple transformation reactions, usually double hydroxylations. Seven compounds are tertiary alcohols in which the hydroxyl group is located on the underside of the progesterone skeleton at either the axial 9 alpha- or the axial 14 alpha-site. One compound has hydroxyl groups at both these sites. Five metabolites are also secondary progesterone alcohols, the hydroxyl groups being at the 6 beta-, 15 alpha- or 15 beta-sites. Two compounds are monohydroxy metabolites; one is dehydrogenated in ring B and the other has lost the pregnane side-chain. The structures of the eight metabolites are 6 beta, 9 alpha-dihydroxyprogesterone; 6 beta, 14 alpha-dihydroxyprogesterone; 9 alpha, 14 alpha-dihydroxyprogesterone; 9 alpha, 15 beta-dihydroxyprogesterone, 14 alpha, 15 alpha-dihydroxyprogesterone; 14 alpha, 15 beta-dihydroxyprogesterone; 14 alpha-hydroxypregna-4,6-diene-3,20-dione and 15 alpha-hydroxyandrostene-3,17-dione. All compounds, except the last one, are biologically rare because they are not products of mammalian progesterone or androstenedione metabolism. They would be difficult to synthesise chemically. We believe that the compounds, 9 alpha, 15 beta-dihydroxyprogesterone; 14 alpha, 15 alpha-dihydroxyprogesterone and 14 alpha-hydroxypregn-4,6-diene-3,20-dione, have not been reported previously as microbial transformation products of progesterone.  相似文献   

11.
Current methods for automatically classifying protein sequences into structure/function groups, based on their hydrophobicity profiles, have typically required large training sets. The most successful of these methods are based on hidden Markov models, but may require hundreds of exemplars for training in order to obtain consistent results. In this paper, we describe a new approach, based on nonlinear system identification, which appears to require little training data to achieve highly promising results. Received: 16 March 1998 / Accepted in revised form: 2 June 1999  相似文献   

12.
Pyrrole- and 1,2,3-triazole-based 2,3-oxidosqualene cyclase (OSC) inhibitors 3 and 4 were discovered by conducting a virtual screening, a docking study based on the crystallographic structure of OSC, and biological assays. The hit rate of the assays was increased by establishing appropriate substructural filters in the virtual screening stage. Amide derivatives of 8 and 12 preserved the inhibitory activity of parent compound 3, which provided a reasonable starting point for further structure–activity-relationship (SAR) studies on related compounds.  相似文献   

13.
Plants produce a myriad of specialized metabolites to overcome their sessile habit and combat biotic as well as abiotic stresses. Evolution has shaped the diversity of specialized metabolites, which then drives many other aspects of plant biodiversity. However, until recently, large‐scale studies investigating the diversity of specialized metabolites in an evolutionary context have been limited by the impossibility of identifying chemical structures of hundreds to thousands of compounds in a time‐feasible manner. Here we introduce a workflow for large‐scale, semi‐automated annotation of specialized metabolites and apply it to over 1000 metabolites of the cosmopolitan plant family Rhamnaceae. We enhance the putative annotation coverage dramatically, from 2.5% based on spectral library matches alone to 42.6% of total MS/MS molecular features, extending annotations from well‐known plant compound classes into dark plant metabolomics. To gain insights into substructural diversity within this plant family, we also extract patterns of co‐occurring fragments and neutral losses, so‐called Mass2Motifs, from the dataset; for example, only the Ziziphoid clade developed the triterpenoid biosynthetic pathway, whereas the Rhamnoid clade predominantly developed diversity in flavonoid glycosides, including 7‐O‐methyltransferase activity. Our workflow provides the foundations for the automated, high‐throughput chemical identification of massive metabolite spaces, and we expect it to revolutionize our understanding of plant chemoevolutionary mechanisms.  相似文献   

14.
15.
To effectively manage plant populations for conservation, there is a need to provide reliable information on the conditions required for maintaining viable populations. This is particularly true for the management of populations of rare plant taxa. Western Australia contains over 45% of Australia’s gazetted rare or threatened flora, 80% of which are found within the highly fragmented southwest region. Resources do not exist to undertake comprehensive studies on the population dynamics and demographics for every rare plant of this diverse region. Here, we describe a method of classifying rare plant taxa into functional groups as a basis for guiding rare flora conservation and management. Data on four floral and two life-history traits were collected for each of the 351 declared rare flora taxa of Western Australia. A hierarchical, agglomerative clustering method was applied to the resulting taxa by traits matrix to extract emergent groupings of plant taxa. The resulting polythetic groups were analysed to determine the variation in traits, including response to disturbance and recorded flower visitors, and how these may affect population persistence in a fragmented landscape. Multivariate methods were used to define emergent groups based on a combination of floral structure and life-history traits of the declared rare flora of Western Australia. Seven emergent functional groups were identified and were largely differentiated by flower shape and life form. These seven functional groupings varied significantly in their response to disturbance. By deriving these functional groups, we plan to develop models for each group on how rates of pollination, seed production and seed fitness are affected by population size and landscape context. The rationale would be to use these profiles to determine whether there are thresholds in population size or position in the landscape at which reproductive rates severely decline. General management guidelines could then be developed for each functional group. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nomenclature Paczkowska and Chapman (2000).  相似文献   

16.
Flavonoids have been reported to exert multiple biological effects that include acting as pro-oxidants at very high doses. The authors determined a structural alert to identify the clastogenic activity of a series of flavonoids with pro-oxidant activity. The methodology was based on a quantitative structure-activity relationship (QSAR) study. Specifically, the authors developed a virtual screening method for a clastogenic model using the topological substructural molecular design (TOPS-MODE) approach. It represents a useful platform for the automatic generation of structural alerts, based on the calculation of spectral moments of molecular bond matrices appropriately weighted, taking into account the hydrophobic, electronic, and steric molecular features. Therefore, it was possible to establish the structural criteria for maximal clastogenicity of pro-oxidant flavonoids: the presence of a 3-hydroxyl group and a 4-carbonyl group in ring C, the maximal number of hydroxyl groups in ring B, the presence of methoxyl and phenyl groups, the absence of a 2,3-double bond in ring C, and the presence of 5,7 hydroxyl groups in ring A. The presented clastogenic model may be useful for screening new pro-oxidant compounds. This alert could help in the design of new and efficient flavonoids, which could be used as bioactive compounds in nutraceuticals and functional food.  相似文献   

17.
18.
Esters are one of the major functional groups present in the structures of prodrugs and bioactive compounds. Their presence is often associated with hydrolytic lability. In this paper, we describe a comparative chemical and biological stability of homologous esters and isosteres in base media as well as in rat plasma and rat liver microsomes. Our results provided evidence for the hydrolytic structure lability relationship and demonstrated that the hydrolytic stability in plasma and liver microsome might depend on carboxylesterase activity. Molecular modelling studies were performed in order to understand the experimental data. Taken together, the data could be useful to design bioactive compounds or prodrugs based on the correct choice of the ester subunit, addressing compounds with higher or lower metabolic lability.  相似文献   

19.
A new class of Aurora-A inhibitors have been identified based on the 2-amino-pyrrolo[2,3-d]pyrimidine scaffold. Here, we describe the synthesis and SAR of this novel series. We report compounds which exhibit nanomolar activity in the Aurora-A biochemical assay and are able to inhibit tumor cell proliferation. This study culminates in compound 30, an inhibitor with potent activity against Aurora A (IC50=0.008 microM), anti-proliferative activity against several tumor cell lines and induces polyploidy in H460 cells.  相似文献   

20.
Identification, characterization and structure elucidation of human metabolites of drug candidates is crucial for the pharmaceutical industry to assess their activity against the therapeutic target of interest and potential toxicological effects. It often requires in vitro synthesis of microgram quantities of metabolites of interest with enzymatic preparations, pre-concentration of the reaction mixture by solid phase extraction (SPE), metabolite isolation using HPLC systems coupled to fraction collectors prior to nuclear magnetic resonance characterization. The method reported herein is a rapid and simple technique using solely off-line mixed phase anionic exchange lipophilic SPE cartridges to selectively isolate glucuronide and sulfate metabolites from their parent compound. This approach capitalizes on the pKa differences between the parent compound, devoided of acidic moieties, and the negatively charged glucuronide and/or sulfate metabolites. Once loaded on the SPE cartridge, the incubation mixture is washed successively with a basic aqueous solution, methanol to elute the non-anionic parent compounds, and then with an acidic methanolic solution to protonate and recover the phase II conjugates. Over 100 microg (>95% purity) of 17 alpha-ethynylestradiol-3-glucuronide and 6-gingerol-4'-glucuronide were successfully isolated using this technique, as well as glucuronide and a sulfate conjugates of 1-{4'-[(1R)-2,2-difluoro-1-hydroxyethyl]biphenyl-4-yl}cyclopropanecarboxamide (DHBC) synthesized in-house. Their structures were confirmed by Ultra Performance Liquid Chromatography coupled to Quadrupole-Time of flight (UPLC-QTof) and nuclear magnetic resonance analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号