首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of pharmaceutical relevant proteins in Escherichia coli frequently triggers inclusion body (IB) formation caused by protein aggregation. In the scientific literature, substantial effort has been devoted to the quantification of IB size. However, particle‐based methods used up to this point to analyze the physical properties of representative numbers of IBs lack sensitivity and/or orthogonal verification. Using high pressure freezing and automated freeze substitution for transmission electron microscopy (TEM) the cytosolic inclusion body structure was preserved within the cells. TEM imaging in combination with manual grey scale image segmentation allowed the quantification of relative areas covered by the inclusion body within the cytosol. As a high throughput method nano particle tracking analysis (NTA) enables one to derive the diameter of inclusion bodies in cell homogenate based on a measurement of the Brownian motion. The NTA analysis of fixated (glutaraldehyde) and non‐fixated IBs suggests that high pressure homogenization annihilates the native physiological shape of IBs. Nevertheless, the ratio of particle counts of non‐fixated and fixated samples could potentially serve as factor for particle stickiness. In this contribution, we establish image segmentation of TEM pictures as an orthogonal method to size biologic particles in the cytosol of cells. More importantly, NTA has been established as a particle‐based, fast and high throughput method (1000–3000 particles), thus constituting a much more accurate and representative analysis than currently available methods.  相似文献   

2.
A direct method was developed to determine the viability of a freshly generated mixed bacterial aerosol. A mixed suspension of (32)P-labeled Staphylococcus aureus and (35)S-labeled Proteus mirabilis was nebulized, and the aerosol was collected and separated according to particle size with an Andersen sampler. Quantitative and qualitative bacteriological and radioisotopic techniques were used to obtain ratios of bacterial to radioactive counts for each organism in samples of the nebulizer suspension and aerosol. Loss of viability was calculated from the change that occurred between the ratio of the nebulizer suspension and the ratio of the aerosol. The viability of S. aureus was unaffected by aerosolization, whereas the viability of P. mirabilis declined by 20 to 60% and was inversely proportional to particle size. The advantages of this method over present indirect methods, as well as potential applications of the method, are discussed.  相似文献   

3.
Abstract. Periodic activities of Dictyostelium discoideum can be observed in cell suspension as two types of oscillations in the light-scattering properties, spike-shaped and sinusoidal. Responses of suspended cells to applied chemoattractants are also reflected by transient changes in light scattering. Alterations in the light-scattering properties are due to structural changes such as changes in cell shape and/or changes in the size of cell aggregates. Therefore, changes in the aggregation state during autonomous oscillations and during attractant-induced responses were investigated. In order to be able to withdraw multiple samples and larger sample volumes from optically monitored cell suspensions, a photometer comprising glass fiber optics immersable in a cell suspension was constructed. Samples were fixed with formaldehyde and photographed. The aggregation state of the samples was quantified by counting the number of particles (cells and cell aggregates) per volume. Folic acid elicited in suspensions of undifferentiated cells a transient decrease in the number of particles per volume as did cAMP in suspensions of preaggregation cells. Periodic changes in the number of particles per volume occurred synchronously with spike-shaped and sinusoidal oscillations. The relative amplitude of the oscillations in particle number was larger during sinusoids than during spikes. Photographs showed periodic changes in the aggregate size during sinusoidal oscillations. In each cycle, the cell-aggregation phase was followed by a phase of partial disaggregation. The recurring loosening of cell-cell contacts may be relevant for sorting out the different cell types. The potential role of contact site as synchronizer and as constituent of an oscillator is discussed.  相似文献   

4.
A method using a combination of asymmetric flow field-flow fractionation (AFFFF) and multiangle light scattering (MALS) techniques has been shown to improve the estimation of virus particle counts and the amount of aggregated virus in laboratory samples. The method is based on the spherical particle counting approach given by Wyatt and Weida in 2004, with additional modifications. The new method was tested by analyzing polystyrene beads and adenovirus samples, both having a well-characterized particle size and concentration. Influenza virus samples were analyzed by the new AFFFF-MALS technique, and particle size and aggregate state were compared with results from atomic force microscopy analysis. The limitations and source of possible errors for the new AFFFF-MALS analysis are discussed.  相似文献   

5.
钙离子对293细胞结团和生长的影响   总被引:1,自引:0,他引:1  
赵亮  朱明龙  张旭  谭文松   《生物工程学报》2005,21(3):482-485
分别在有血清和无血清条件下、方瓶和转瓶中考察了Ca2+ 对2 93细胞结团和生长的影响。通过实验发现,Ca2+ 浓度在0 1~1 0mmol L范围内对2 93细胞的贴壁和结团性质有显著影响,而对生长影响不大。结果表明:有血清贴壁培养时,较高的Ca2+ 浓度有利于细胞贴壁;无血清悬浮培养中,Ca2+ 浓度越高,细胞结团越严重,细胞结团达到平衡后的平均粒径(D ,μm)与Ca2+ 浓度(c,mmol L)在0.1~0.5mmol L范围内可用一次函数D =58.65c +16.96描述,细胞结团尺寸是可调控的;而细胞在不同的Ca2+ 浓度下有相似的生长规律。  相似文献   

6.
Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations.  相似文献   

7.
An electronic particle counter has been used to estimate the disintegration by freeze-pressing baker's yeast. A counter threshold level which just yielded the maximum count for intact cells was selected. The conductivity of the suspending medium was chosen such that maximum counts were obtained. Under these conditions, the electronic counts agreed well with the visual counts. At a certain threshold level the maximum count was obtained at a lower resistivity (higher conductivity) in the suspending solution with the freeze-pressed suspension than with untreated cells, indicating that damage to the permeability barrier may occur without disruntion of the cell envelope. Fresh baker's yeast cells do not behave as nonconducting particles. This has to be taken into account when volume determinations with electronic particle counters are performed.  相似文献   

8.
AIM: The aim of this study was to determine whether aggregation processes in aqueous phase may explain the decrease in plaque forming unit (PFU) counts for pH close to the isoelectric point (pI) of viral particles (MS2 phages). METHODS AND RESULTS: Loss in PFU was observed for pH < or = pI (pI(MS2) = 3.9): for example, at pH 2.5, loss was approx. 3 log(10) PFU. Particle size analysis combining results of dynamic light scattering and flow particle image analysis was then applied to determine the aggregate state of viral suspensions by recording size distributions. The size of major population significantly changed to 30 nm at neutral pH to more than several micrometres when passing below the isoelectric point. CONCLUSIONS: Our study shows that MS2 phages exhibit significant aggregation processes for pH < or = pI leading to aggregate with sizes of few micrometres. This aggregation process can largely explain the decline in PFU counts. SIGNIFICANCE AND IMPACT OF THE STUDY: It is clear that viral aggregation can be a source of significant bias for PFU assays because in the presence of an aggregate the PFU count can be less than the sum of its constituent particles. Therefore, cautions should be taken in terms of conditions of storage (pH far from pI) to avoid such aggregation artefact.  相似文献   

9.
Particle and cell counting is used for a variety of applications including routine cell culture, hematological analysis, and industrial controls1-5. A critical breakthrough in cell/particle counting technologies was the development of the Coulter technique by Wallace Coulter over 50 years ago. The technique involves the application of an electric field across a micron-sized aperture and hydrodynamically focusing single particles through the aperture. The resulting occlusion of the aperture by the particles yields a measurable change in electric impedance that can be directly and precisely correlated to cell size/volume. The recognition of the approach as the benchmark in cell/particle counting stems from the extraordinary precision and accuracy of its particle sizing and counts, particularly as compared to manual and imaging based technologies (accuracies on the order of 98% for Coulter counters versus 75-80% for manual and vision-based systems). This can be attributed to the fact that, unlike imaging-based approaches to cell counting, the Coulter Technique makes a true three-dimensional (3-D) measurement of cells/particles which dramatically reduces count interference from debris and clustering by calculating precise volumetric information about the cells/particles. Overall this provides a means for enumerating and sizing cells in a more accurate, less tedious, less time-consuming, and less subjective means than other counting techniques6.Despite the prominence of the Coulter technique in cell counting, its widespread use in routine biological studies has been prohibitive due to the cost and size of traditional instruments. Although a less expensive Coulter-based instrument has been produced, it has limitations as compared to its more expensive counterparts in the correction for "coincidence events" in which two or more cells pass through the aperture and are measured simultaneously. Another limitation with existing Coulter technologies is the lack of metrics on the overall health of cell samples. Consequently, additional techniques must often be used in conjunction with Coulter counting to assess cell viability. This extends experimental setup time and cost since the traditional methods of viability assessment require cell staining and/or use of expensive and cumbersome equipment such as a flow cytometer.The Moxi Z mini automated cell counter, described here, is an ultra-small benchtop instrument that combines the accuracy of the Coulter Principle with a thin-film sensor technology to enable precise sizing and counting of particles ranging from 3-25 microns, depending on the cell counting cassette used. The M type cassette can be used to count particles from with average diameters of 4 - 25 microns (dynamic range 2 - 34 microns), and the Type S cassette can be used to count particles with and average diameter of 3 - 20 microns (dynamic range 2 - 26 microns). Since the system uses a volumetric measurement method, the 4-25 microns corresponds to a cell volume range of 34 - 8,180 fL and the 3 - 20 microns corresponds to a cell volume range of 14 - 4200 fL, which is relevant when non-spherical particles are being measured. To perform mammalian cell counts using the Moxi Z, the cells to be counted are first diluted with ORFLO or similar diluent. A cell counting cassette is inserted into the instrument, and the sample is loaded into the port of the cassette. Thousands of cells are pulled, single-file through a "Cell Sensing Zone" (CSZ) in the thin-film membrane over 8-15 seconds. Following the run, the instrument uses proprietary curve-fitting in conjunction with a proprietary software algorithm to provide coincidence event correction along with an assessment of overall culture health by determining the ratio of the number of cells in the population of interest to the total number of particles. The total particle counts include shrunken and broken down dead cells, as well as other debris and contaminants. The results are presented in histogram format with an automatic curve fit, with gates that can be adjusted manually as needed.Ultimately, the Moxi Z enables counting with a precision and accuracy comparable to a Coulter Z2, the current gold standard, while providing additional culture health information. Furthermore it achieves these results in less time, with a smaller footprint, with significantly easier operation and maintenance, and at a fraction of the cost of comparable technologies.  相似文献   

10.
The aggregation of human platelets induced by adenosine diphosphate (ADP) was used to evaluate electronic particle size analyzer measurements of platelet aggregates in plasma. As platelets began to clump in plasma, the total volume and the diameter of individual aggregates increased; after a time dependent on experimental conditions, the diameter increased but the total volume remained unchanged. Similar but opposite changes in size distribution occurred during platelet deaggregation. The total volume of aggregates formed in plasma varied (linear correlation coefficient = 0.99) with the total volume of platelets which were available to clump and with simultaneous changes in optical density. The diameter of the aggregates varied with the concentration of, and time of exposure to, ADP and with the total volume of platelets and aggregates in plasma was not different from that of control platelets in untreated plasma, the individual platelets aggregated without an accompanying increase in size. This study demonstrates that platelet aggregation can be characterized by electronic measurements of the size distribution of platelet aggregates.  相似文献   

11.
A theoretical treatment for the aggregation of cellular dispersions in a turbulent fluid is proposed based on the work of Saffman &; Turner (1956). The use of an expression for the rate of collisions between cells and cell aggregates which is dependent on the size of the colliding cell particles gives theoretical results which markedly reflect many of the features of cellular aggregation as found experimentally by pulse height analysis using a Coulter counter and particle size discriminator. In particular the shape of the distribution curves, the rate of change of single cell population and the attainment of an equilibrium state as well as the occurrence of cell aggregate redistribution during aggregation are shown to be consistent with aggregation in a turbulent field.It is also shown that the nature of the initial cell aggregate distribution has a very significant effect on subsequent aggregation kinetics.The theory has been applied to the aggregation of two Chinese hamster cell lines and gives a satisfactory explanation of the experimental results.  相似文献   

12.
Many G-protein coupled receptors (GPCRs) undergo ligand-dependent homologous desensitization and internalization. Desensitization, defined as a decrease in the responsiveness to ligand, is accompanied by receptor aggregation on the cell surface and internalization via clathrin-coated pits to an intracellular endosomal compartment. In this study, we have taken advantage of the trafficking properties of GPCRs to develop a useful screening method for the identification of receptor mimetics. A series of studies were undertaken to evaluate the expression, functionality, and ligand-dependent trafficking of GPCR-green fluorescent protein (GFP) fusion conjugates stably transfected into HEK 293 cells. These GPCR-GFP expressing cells were then utilized in the validation of the ArrayScantrade mark (Cellomicstrade mark, Pittsburgh, PA), a microtiter plate imaging system that permits cellular and subcellular quantitation of fluorescence in whole cells. These studies demonstrated our ability to measure the internalization of a parathyroid hormone (PTH) receptor-GFP conjugate after ligand treatment by spatially resolving internalized receptors. Internalization was time- and dose-dependent and appeared to be selective for PTH. Similar results were obtained for a beta(2)-adrenergic receptor (beta(2) AR)-GFP conjugate stably expressed in HEK 293 cells. The internalized GFP-labeled receptors were visualized as numerous punctate 3spots2 within the cell interior. An algorithm has been developed that identifies and collects information about these spots, allowing quantification of the internalization process. Variables such as the receptor-GFP expression level, plating density, cell number per field, number of fields scanned per well, spot size, and spot intensity were evaluated during the development of this assay. The method represents a valuable tool to screen for receptor mimetics and antagonists of receptor internalization in whole cells rapidly.  相似文献   

13.
A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone.  相似文献   

14.
We report a high-sensitivity cell secretome detection method using competitive immuno-aggregation and a micro-Coulter counter. A target cell secretome protein competes with anti-biotin-coated microparticles (MPs) to bind with a biotinylated antibody (Ab), causing decreased aggregation of the functionalized MPs and formation of a mixture of MPs and aggregates. In comparison, without the target cell secretome protein, more microparticles are functionalized, and more aggregates are formed. Thus, a decrease in the average volume of functionalized microparticles/aggregates indicates an increase in cell secretome concentration. This volume change is measured by the micro-Coulter counter, which is used to quantitatively estimate the cell secretome concentration. Vascular endothelial growth factor (VEGF), one of the key cell secretome proteins that regulate angiogenesis and vascular permeabilization, was used as the target protein to demonstrate the sensing principle. A standard calibration curve was generated by testing samples with various VEGF concentrations. A detection range from 0.01 ng/mL to 100.00 ng/mL was achieved. We further demonstrated the quantification of VEGF concentration in exogenous samples collected from the secretome of human mesenchymal stem cells (hMSCs) at different incubation times. The results from the assay agree well with the results of a parallel enzyme-linked immunoabsorbent assay (ELISA) test, indicating the specificity and reliability of the competitive immuno-aggregation assay. With its simple structure and easy sample preparation, this assay not only enables high sensitivity detection of VEGF but also can be readily extended to other types of cell secretome analysis as long as the specific Ab is known.  相似文献   

15.

Silver nanoparticle (AgNP) has wide-spread applications in photovoltaic cell, biological sensors, biomedical devices, surface enhanced Raman scattering (SERS) etc. which are intricately dependent on AgNP shape, size, concentration and aggregation states. Here, the particle size, shape and aggregation dependent dipole and quadrupole surface plasmon resonances are spectroscopically investigated by preparing AgNPs (diameter 10–110nm) using silver nitrate (AgNO3) and sodium borohydride (NaBH4 as reducing agent) in aqueous environment at 0 C. The AgNP UV-Visible spectra showing plasmon-induced dipole and quadrupole modes are corroborated by the theoretical framework of Mie-Gans model and discrete dipole scattering model DDSCAT and different particle sizes, shapes and possible aggregation or clusterization are predicted. All the samples show presence of spherical and nonspherical distribution of AgNP. However, the concentration of nonspherical particle is more for higher concentration of reducing agent as is evidenced by the appearance of quadrapole absorption maxima. The minimum particle size is found at a particular ratio of concentration of AgNO3 and NaBH4. The day variation of AgNP kinetics also signalled the onset of quadrupole deformation of clusters.

  相似文献   

16.
The thermoluminescence (TL) of nanoparticles has become a matter of keen interest in recent times but is rarely reported. This article reports the synthesis of ZnS:Mn nanocrystals using a chemical route, with mercaptoethanol (ME) as the capping agent. The particle sizes for the nanocrystals were measured by X‐ray diffraction (XRD) and also by studying transmission electron microscopy (TEM) patterns. The particle sizes of the synthesized samples were found to be between 1 and 3 nm. For samples with different concentrations of the capping agent, it was found that the TL intensity of the ZnS:Mn nanoparticles increased as the particle size decreased. A shift in the peak position of the TL glow curve was also seen with decreasing particle size. The TL intensity was found to be maximal for samples with 1.2% of Mn. A change in the peak position was not found for samples with different concentrations of Mn. The half‐width glow peak curve method was used to determine the trap‐depth. The frequency factor of the synthesized samples was also calculated. The stability of the charge carriers in the traps increases with decreasing nanoparticle size. The higher stability may be attributed to the higher surface/volume ratio and also to the increase in the trap‐depth with decreasing particle size. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Emerging nanomaterials are being manufactured with varying particle sizes, morphologies, and crystal structures in the pursuit of achieving outstanding functional properties. These variations in these key material properties of nanoparticles may affect their environmental fate and transport. To date, few studies have investigated this important aspect of nanoparticles'' environmental behavior. In this study, the aggregation kinetics of ten different TiO2 nanoparticles (5 anatase and 5 rutile each with varying size) was systematically evaluated. Our results show that, as particle size increases, the surface charge of both anatase and rutile TiO2 nanoparticles shifts toward a more negative value, and, accordingly, the point of zero charge shifts toward a lower value. The colloidal stability of anatase sphere samples agreed well with DLVO theoretical predictions, where an increase in particle size led to a higher energy barrier and therefore greater critical coagulation concentration. In contrast, the critical coagulation concentration of rutile rod samples correlated positively with the specific surface area, i.e., samples with higher specific surface area exhibited higher stability. Finally, due to the large innate negative surface charge of all the TiO2 samples at the pH value (pH = 8) tested, the addition of natural organic matter was observed to have minimal effect on TiO2 aggregation kinetics, except for the smallest rutile rods that showed decreased stability in the presence of natural organic matter.  相似文献   

18.
《Biorheology》1996,33(4-5):353-364
The well-known S-shaped settling curves are obtained as solutions of an autonomic dynamical system deduced mathematically from the generalized Stokes formula, the blood volume conservation law, and the Smoluchowski theory of particle coagulation. Numerical computations and parametric analysis of the deduced two nonlinear differential equations for the plasma zone thickness and aggregate size are given. It is shown that the model presented makes it possible, on the basis of experimentally recorded sedimentation curves and aggregate size growth, to identify quantitatively the values of the essential physical parameters of the coupled processes of erythrocyte aggregation and sedimentation. This method of identification could be used as a diagnostic test in hematological laboratories.  相似文献   

19.
We describe a fully automatic image analysis system capable of measuring cell numbers, volumes, lengths, and widths of bacteria in soil smears. The system also determines the number of cells in agglomerates and thus provides the frequency of dividing cells (FDC). Images are acquired from a confocal laser scanning microscope. The grey images are smoothed by convolution and by morphological erosion and dilation to remove noise. The background is equalized by flooding holes in the image and is then subtracted by two top hat transforms. Finally, the grey image is sharpened by delineation, and all particles above a fixed threshold are detected. The number of cells in each detected particle is determined by counting the number of local grey-level maxima in the particle. Thus, up to 1,500 cells in 10 fields of view in a soil smear are analyzed in 30 min without human intervention. Automatic counts of cell numbers and FDC were similar to visual counts in field samples. In microcosms, automatic measurements showed significant increases in cell numbers, FDC, mean cell volume, and length-to-width ratio after amendment of the soil. Volumes of fluorescent microspheres were measured with good approximation, but the absolute values obtained were strongly affected by the settings of the detector sensitivity. Independent measurements of bacterial cell numbers and volumes by image analysis and of cell carbon by a total organic carbon analyzer yielded an average specific carbon content of 200 fg of C (mu)m(sup-3), which indicates that our volume estimates are reasonable.  相似文献   

20.
The size of LDL is usually reported as particle diameter, with the implicit assumption that it is a spherical particle. On the other hand, data obtained by cryoelectron microscopy and crystallographic analysis suggest that LDL shape may be discoid. We have investigated LDL particle geometry by combining data on LDL lipid composition with size measurement. The mean LDL diameter of 160 samples was measured by high-performance gel-filtration chromatography (HPGC), and particle volume was calculated from its lipid composition. Assuming a spherical shape, diameters calculated from volume correlated poorly with values obtained by HPGC (R(2) = 0.36). Assuming a discoid shape, particle height was calculated from volume and HPGC diameter. Diameter (20.9 +/- 0.5 nm) and height (12.1 +/- 0.8 nm) were not significantly related to each other (r = 0.14, P = 0.09) and accounted for 23% and 77%, respectively, of the variation in particle volume. In multivariate regression models, LDL core lipids were the main determinants of height (R(2) = 0.83), whereas free cholesterol in the shell, which contributes only 5-9% to LDL mass, was the main determinant of diameter (R(2) = 0.54). We conclude that combined data from composition and size measurements are compatible with a discoid particle shape and propose a structural model for LDL in which free cholesterol plays a major role in determining particle shape and diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号