首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Chorioallantoic branching morphogenesis is a key milestone during placental development, creating the large surface area for nutrient and gas exchange, and is therefore critical for the success of term pregnancy. Several Wnt pathway molecules have been shown to regulate placental development. However, it remains largely unknown how Wnt-Frizzled (Fzd) signaling spatiotemporally interacts with other essential regulators, ensuring chorionic branching morphogenesis and angiogenesis during placental development. Employing global and trophoblast-specific Fzd5-null and Gcm1-deficient mouse models, combining trophoblast stem cell lines and tetraploid aggregation assay, we demonstrate here that an amplifying signaling loop between Gcm1 and Fzd5 is essential for normal initiation of branching in the chorionic plate. While Gcm1 upregulates Fzd5 specifically at sites where branching initiates in the basal chorion, this elevated Fzd5 expression via nuclear β-catenin signaling in turn maintains expression of Gcm1. Moreover, we show that Fzd5-mediated signaling induces the disassociation of cell junctions for branching initiation via downregulating ZO-1, claudin 4, and claudin 7 expressions in trophoblast cells at the base of the chorion. In addition, Fzd5-mediated signaling is also important for upregulation of Vegf expression in chorion trophoblast cells. Finally, we demonstrate that Fzd5-Gcm1 signaling cascade is operative during human trophoblast differentiation. These data indicate that Gcm1 and Fzd5 function in an evolutionary conserved positive feedback loop that regulates trophoblast differentiation and sites of chorionic branching morphogenesis.  相似文献   

5.
6.
Mammalian embryos have an intimate relationship with their mothers, particularly with the placental vasculature from which embryos obtain nutrients essential for growth. It is an interesting vascular bed because maternal vessel number and diameter change dramatically during gestation and, in rodents and primates, the terminal blood space becomes lined by placental trophoblast cells rather than endothelial cells. Molecular genetic studies in mice aimed at identifying potential regulators of these processes have been hampered by lack of understanding of the anatomy of the vascular spaces in the placenta and the general nature of maternal-fetal vascular interactions. To address this problem, we examined the anatomy of the mouse placenta by preparing plastic vascular casts and serial histological sections of implantation sites from embryonic day (E) 10.5 to term. We found that each radial artery carrying maternal blood into the uterus branched into 5-10 dilated spiral arteries located within the metrial triangle, populated by uterine natural killer (uNK) cells, and the decidua basalis. The endothelial-lined spiral arteries converged together at the trophoblast giant cell layer and emptied into a few straight, trophoblast-lined "canals" that carried maternal blood to the base of the placenta. Maternal blood then percolated back through the intervillous space of the labyrinth toward the maternal side of the placenta in a direction that is countercurrent to the direction of the fetal capillary blood flow. Trophoblast cells were found invading the uterus in two patterns. Large cells that expressed the trophoblast giant cell-specific gene Plf (encoding Proliferin) invaded during the early postimplantation period in a pattern tightly associated with spiral arteries. These peri/endovascular trophoblast were detected only approximately 150-300 microm upstream of the main giant cell layer. A second type of widespread interstitial invasion in the decidua basalis by glycogen trophoblast cells was detected after E12.5. These cells did not express Plf, but rather expressed the spongiotrophoblast-specific gene Tpbp. Dilation of the spiral arteries was obvious between E10.5 and E14.5 and was associated with a lack of elastic lamina and smooth muscle cells. These features were apparent even in the metrial triangle, a site far away from the invading trophoblast cells. By contrast, the transition from endothelium-lined artery to trophoblast-lined (hemochorial) blood space was associated with trophoblast giant cells. Moreover, the shaping of the maternal blood spaces within the labyrinth was dependent on chorioallantoic morphogenesis and therefore disrupted in Gcm1 mutants. These studies provide important insights into how the fetoplacental unit interacts with the maternal intrauterine vascular system during pregnancy in mice.  相似文献   

7.
8.
D A Bhiwgade 《Acta anatomica》1990,138(4):302-317
In the present study the comparative ultrastructure of the definitive chorio-allantoic placental barrier has been studied in considerable detail in six species of bats, representing six different families and both suborders of Chiroptera, by electron microscopy, and these species illustrate different kinds of interhaemal membranes met with among bats. The definitive chorio-allantoic placenta of Rousettus leschenaulti is haemodichorial, since the syncytiotrophoblast and cytotrophoblast layers are present to term. The fine structure of the placental barrier in the labyrinth of the definitive placenta of Rhinopoma hardwickei hardwickei is essentially endotheliomonochorial due to the presence of a single layer of cytotrophoblast and maternal endothelial cells. The placenta of Taphozous melanopogon, examined electron-microscopically in the present study, shows a thick maternal endothelium, a continuous interstitial membrane and the presence of a single layer of syncytiotrophoblast. The placenta of Megaderma comprises a typical endotheliochorial labyrinth and the presence of two layers of trophoblast. In Rhinolophus rouxi, the mature placenta during advanced pregnancy resembles that of Megaderma, its labyrinth containing large maternal capillaries with maternal endothelial cells and the two layers of trophoblast. Finally, the placental barrier of Hipposideros fulvus fulvus is haemodichorial due to the presence of two layers of trophoblast and the absence of maternal endothelial cells.  相似文献   

9.
10.
Prolyl oligopeptidase (POP) is a serine endopeptidase which selectively digests a -Pro-X- peptide bond. Our previous study showed that POP mRNA was strongly expressed in the spongiotrophoblast of the mouse placenta at E17.5, suggesting its importance in development. To gain more insight into POP’s role during gestation, we investigated its expression using different developmental stages of placenta. As a result of in situ hybridization, we found that localization of POP mRNA changed at E12.5. POP mRNA was strongly expressed in the spongiotrophoblast and labyrinth at E10.5 and E11.5 but thereafter only in the spongiotrophoblast. Immunohistochemistry revealed that POP was present in the parietal trophoblast giant cell, the spongiotrophoblast cell, and the labyrinth at E11.5 but the strong expression in the labyrinth was maintained only in the canal-associated and sinusoidal trophoblast giant cells at E16.5 and E18.5. To determine subcellular distribution of the POP protein, we fractionated the placental extract into cytoplasmic, membrane, and nuclear subfractions. By Western blot analysis, POP was detected in the cytoplasmic and membrane fractions but not in the nuclear fraction at E11.5 and E16.5. Interestingly, the cytoplasmic POP exhibited higher enzymatic activity than the membrane-associated type. These data suggest that the cytoplasmic and membrane-associated POP have distinct roles in different types of placental cells.  相似文献   

11.
12.
13.
Notch signaling is involved in cell lineage specification in many developing organs. In mice there are four known Notch receptor genes (Notch1–4) and five ligands genes (Dll1, 3, 4 and Jagged1 and 2). Notch2 is essential for development of placenta, an organ that mediates feto-maternal nutrient and gas exchange as well as maternal adaptations to pregnancy. However the role of other Notch receptors and ligands in placentation is not known. In order to gain better insight into the role of Notch signaling in mouse placenta we thoroughly analyzed mRNA expression of all Notch receptors and ligands in all trophoblast cell types from the embryonic day (E) 7.5 to E12.5, the period during which all of the substructures of the placenta develop. Here we show that Notch receptors and ligands are specifically and dynamically expressed in multiple cell layers of developing placenta. We found that the Notch2 receptor and Jagged1 and Jagged2 ligand genes are complementarily expressed in trophoblast cells of the chorion and its later derivatives in the labyrinth. Dll4 and Notch2 expression complement each other in the ectoplacental cone, while Dll1 and Notch2 are expressed in an ectoplacental cone derivative, the junctional zone. Moreover Dll4 and Notch2 are expressed at the ectoplacental cone–decidua interface at early stages of placentation. Additionally we show that Notch2 is dynamically expressed in all trophoblast giant cell subtypes, which is consistent with previous reports. Overall these expression pattern results suggest that Notch signaling may play several diverse roles during placenta development.  相似文献   

14.
15.
The murine placenta has a trichorial structure with two multinucleated syncytiotrophoblast (SCT) layers representing a barrier between the maternal and fetal blood system. Genes of endogenous retroviruses and retrotransposon-derived paternally expressed genes (Peg), remnants of past infections and integrations in the genome, have essential functions in placentogenesis. Previous studies showed that the envelope genes Syncytin-A and Syncytin-B were essential for cell–cell fusion of the SCT. The goal of this study was to analyze the temporal localization and expression of nine genes throughout placental development from embryonic day (E)8.5 to E18.5 using in situ-hybridization and absolute RNA-quantification. These included a comparison of previously characterized genes from the labyrinth Syncytin-A, Syncytin-B, Gcm1, the junctional zone PL-1, PL-2, Plf, Tpbpa with two further characterized genes Peg10 and Tpbpb. Syncytin-A and Syncytin-B RNA localized to SCT-I and SCT-II, respectively. Peg10 RNA localized to all extraembryonic tissues, specifically to the parietal and sinusoidal TGC of the labyrinth layer, which is in contact with SCT-I and the maternal blood. All three retroviral/retrotransposon-derived genes showed the highest expression at E16.5, but Peg10 with 188,917.1 molecules/ng cDNA was 208-fold and 106.8-fold higher expressed than Syncytin-A and Syncytin-B, respectively. Tpbpb localized to the junctional zone and showed the highest expression at E16.5 along with PL-2, Plf, Tpbpa, but not PL-1, which decreased in expression at E10.5. To investigate a role of Syncytin-A, Syncytin-B and Peg10 in cell–cell fusion, we established a cell culture system with fractionated primary trophoblasts from murine placentae. Culturing trophoblasts for up to 72 h partly resembled trophoblast development in vivo according to the nine marker genes. Knockdown of Syncytin-A demonstrated a functional regulation of cell–cell fusion, where knockdown of Peg10 showed no involvement in cell fusion. Due to the expression of Peg10 in TGCs, we propose an essential functional role in the fetal–maternal blood system.  相似文献   

16.
17.
The placenta is composed of multiple trophoblast cell types that have diverse endocrine, vascular and nutrient transport functions. We have developed a transgenic system to investigate the developmental and functional roles of specific cell types using conditional expression of a cytotoxin to induce cell ablation in transgenic mice. The Tpbpa gene is expressed in ectoplacental cone cells starting between embryonic days (E) 7.5 and 8.5, and later in the spongiotrophoblast layer of the mature placenta. Tpbpa-positive cells are progenitors of many trophoblast subtypes including three subtypes of trophoblast giant cells (TGCs) and glycogen trophoblast cells. We used a Cre recombinase transgene driven by the Tpbpa promoter to irreversibly activate a diphtheria toxin A (DTA) transgene. Cre/DTA double transgenic placentas showed dramatic reduction of Tpbpa-positive spongiotrophoblast cells by E10.5 and conceptuses died by ~ E11.5. The number of cells associated with maternal blood spaces, spiral artery TGCs (SpA-TGCs) and canal TGCs, and glycogen trophoblast cells were reduced. The loss of these specific trophoblast subtypes, especially SpA-TGCs, was correlated with a decrease in maternal spiral artery diameters, indicating a critical role of these cells in modulating the maternal vasculature. In contrast, parietal TGCs were not significantly reduced by progenitor cell ablation, suggesting that there is compensatory growth of this population and indeed a population of Ascl2 (Mash2)-positive/Tpbpa-negative cells was increased in the spongiotrophoblast layer in the Cre/DTA double transgenics. Our work demonstrates that the Tpbpa-positive lineage is essential for placental function and particularly critical for maternal vasculature remodeling.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号