首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Baruah H  Wright MW  Bierbach U 《Biochemistry》2005,44(16):6059-6070
[PtCl(en)(ACRAMTU-S)](NO(3))(2) (PT-ACRAMTU; en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) is a dual metalating/intercalating DNA binding drug conjugate that shows cytotoxicity at micromolar to nanomolar concentrations in a wide range of solid tumor cell lines. In approximately 80% of its adducts, PT-ACRAMTU binds to guanine-N7 in the major groove, selectively at 5'-CG sites [Budiman, M. E. et al. (2004) Biochemistry 43, 8560-8567]. Here, we report the synthesis, physical characterization, and NMR solution structure of a site-specifically modified octamer containing this adduct, 5'-CCTCGTCC-3'/3'-GGAGCAGG-5', where the asterisk indicates the [Pt(en)ACRAMTU)](3+) fragment. The structure was determined by a combination of high-resolution 2-D NMR spectroscopy and restrained molecular dynamics/molecular mechanics (rMD/MM) calculations using 179 NOE distance restraints and refined to an r(6) weighted residual (R(x)) of 9.2 x 10(-)(2) using the complete relaxation matrix approach. An average structure was calculated from the final ensemble of 19 rMD geometries showing pairwise root-mean-square deviations of <1.05 A. The dual binding increases the thermal stability of the octamer compared to the unmodified duplex (DeltaT(m) = 13.2 degrees ). The modified sequence shows structural features reminiscent of both B- and A-type DNA. Watson-Crick hydrogen bonding is intact at and beyond the adduct site. Platinum is bound to the N7 position of G5 in the major groove, and ACRAMTU intercalates into the central 5'-C4G5/C12G13 base-pair step on the 5'-face of the platinated nucleobase. The chromophore's long axis is aligned with the long axes of the adjacent base pairs, maximizing intermolecular pi-pi stacking interactions. PT-ACRAMTU lengthens (rise, 6.62 A) and unwinds (twist, 15.4 degrees ) the duplex at the central base-pair step but does not cause helical bending. No C3'-endo deoxyribose pucker and no significant roll are observed at the site of intercalation/platination, which clearly distinguishes the PT-ACRAMTU-induced damage from the 1,2-intrastrand cross-link formed by cisplatin. Overall, the DNA perturbations produced by PT-ACRAMTU do not appear to mimic those caused by the major cisplatin lesion. Instead, intriguing structural similarities are observed for PT-ACRAMTU's monoadduct and the N7 adducts of dual major-groove alkylating/intercalating antitumor agents, such as the pluramycins.  相似文献   

3.
4.
5.
6.
7.
The crystal structure of a complex of human TATA-binding protein with TATA-sequence DNA has been solved, complementing earlier TBP/DNA analyses fromSaccharomyces cerevisiaeandArabidopsis thaliana. Special insight into TATA box specificity is provided by considering the TBP/DNA complex, not as a protein molecule with bound DNA, but as a DNA duplex with a particularly large minor groove ligand. This point of view provides explanations for: (1) why T·A base-pairs are required rather than C·G; (2) why an alternation of T and A bases is needed; (3) how TBP recognizes the upstream and downstream ends of the TATA box in order to bind properly; and (4) why the second half of the TATA box can be more variable than the first.  相似文献   

8.
9.
The TATA box-binding protein (TBP) recognizes its target sites (TATA boxes) by indirectly reading the DNA sequence through its conformation effects (indirect readout). Here, we explore the molecular mechanisms underlying indirect readout of TATA boxes by TBP by studying the binding of TBP to adenovirus major late promoter (AdMLP) sequence variants, including alterations inside as well as in the sequences flanking the TATA box. We measure here the dissociation kinetics of complexes of TBP with AdMLP targets and, by phase-sensitive assay, the intrinsic bending in the TATA box sequences as well as the bending of the same sequence induced by TBP binding. In these experiments we observe a correlation of the kinetic stability to sequence changes within the TATA recognition elements. Comparison of the kinetic data with structural properties of TATA boxes in known crystalline TBP/TATA box complexes reveals several "signals" for TATA box recognition, which are both on the single base-pair level, as well as larger DNA tracts within the TATA recognition element. The DNA bending induced by TBP on its binding sites is not correlated to the stability of TBP/TATA box complexes. Moreover, we observe a significant influence on the kinetic stability of alteration in the region flanking the TATA box. This effect is limited however to target sites with alternating TA sequences, whereas the AdMLP target, containing an A tract, is not influenced by these changes.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   

19.
We establish that the TATA binding protein (TBP) in the presence of TFIIA recognizes the TATA box in nucleosomal DNA dependent on the dissociation of the amino-terminal tails of the core histones from the nucleosome and the position of the TATA box within the nucleosome. We examine TBP/TFIIA access to the TATA box with this sequence placed in four distinct rotational frames with reference to the histone surface and at three distinct translational positions at the edge, side and dyad axis of the nucleosome. Under our experimental conditions, we find that the preferential translational position at which TBP/TFIIA can bind the TATA box is within linker DNA at the edge of the nucleosome and that binding is facilitated if contacts made by the amino-terminal tails of the histones with nucleosomal DNA are eliminated. TBP/TFIIA binding to DNA at the edge of the nucleosome occurs with the TATA box in all four rotational positions. This is indicative of TBP/TFIIA association directing the dissociation of the TATA box from the surface of the histone octamer.  相似文献   

20.
M Suzuki  M D Allen  N Yagi    J T Finch 《Nucleic acids research》1996,24(14):2767-2773
Possible stereochemical determinants of the orientation of TBP on the TATA box are discussed using the crystal coordinates of TBP-TATA complexes, which have been determined by other groups. The C-terminal half of the TBP beta-sheet interacts with the TATA site of the DNA, and the N-terminal half with the A-rich site, so that the two sites with distinct curvatures produce a unique fit. Although chemical contacts take place between one side of the beta-sheet and the DNA minor groove, the interaction seems to be facilitated indirectly by the characteristics of the other side of the beta-sheet and the DNA major groove. Thus, Ala71, Leu162 and Pro190 differentiate the curvature of the beta-sheet in the N- and C-halves. The methyl positions in the DNA major groove modulate the bendability of the two DNA sites by using differences in the rolling capacity of TA and AT compared with PyT, and in the shifting capacity of AT compared with TT. The deformations of the first steps (TA and PyT) in the two sites are the largest and thus are important for the overall bending of the DNA. The differences between the two DNA sites are greatest at the second steps (AT and TT) and so these are important for determining the orientation of TBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号