首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological changes in the tunic layers and migration of the test cells during swimming period in the larva of the ascidian, Ciona intestinalis , were observed by light and electron microscopy. The swimming period was divided into three stages. In stage 1, further formation of juvenile tunic layer started only in the larval trunk and neck region. In stage 2, the layer became swollen in the ventral and dorsal sides of the neck region and in stage 3, the swelling expanded backward. Concomitantly with these changes, the outermost larval tunic layer (outer cuticular layer), which had been formed before hatching, also swelled in the neck region in stage 2 and formed two humps in stage 3, although the layer did not change in the tail region during the swimming period. Test cells that were present over the entire larval tunic layer in stage 1 began to move from the surface of the fin toward that of the side of the body in stage 2, and finally gathered to form six bands running radially from the anterior end to the posterior end of the trunk region and aligned along the lateral sides of body in the tail region in stage 3. In electron microscopic observations, pseudopodia protruding from the test cells invaded the larval tunic, following which they extended proximate to the juvenile tunic in the trunk region. In the tail region, which had no juvenile tunic layer as that described, the pseudopodia invaded and remained adjacent to the surface of the epidermis or the sensory cilia protruded from the epidermis. Metamorphosis of the larvae, further tunic formation, degradation of adhesive papilla, attachment of larva to the substratum and tail resorption commenced after these morphological changes occurred. The possible role of the test cells in metamorphosis is discussed.  相似文献   

2.
Trididemnum miniatum is a colonial ascidian harboring the photosymbiotic prokaryote Prochloron sp. These bacterial cells are located in the tunic of the host animal. The present study revealed, by ultrastructural analysis, that the Prochloron cells were exclusively distributed and proliferated in the tunic. They were shown to be embedded in the tunic matrix and to have no direct contact with ascidian cells. Some tunic cells of the ascidians, however, did phagocytize and digest the symbiont. Round cell masses were sometimes found in the tunic and appeared to consist of disintegrating cyanobacterial cells. The thoracic epidermis of ascidian zooids was often digitated, and the epidermal cells extended microvilli into the tunic. Since there were no Prochloron cells in the alimentary tract of the ascidian zooids, the photosymbionts would not be considered part of the typical diet of the host ascidians. Thin layer chromatography showed that the symbionts possessed both chlorophyll a and b, while a 16S rRNA gene phylogeny supported the identification of the photosymbiont of T. miniatum as Prochloron sp.  相似文献   

3.
Vertical transmission of cyanobacterial symbionts occurs in didemnid ascidians harboring Prochloron as an obligate symbiont; the photosymbionts are transferred from the parental ascidian colony to the offspring in various ways depending on host species. Although several didemnids harbor non-Prochloron cyanobacteria in their tunics, few studies have reported the processes of vertical transmission in these didemnids. Here we describe the histological processes of the transmission of cyanobacteria in two didemnids, Trididemnum nubilum harboring Synechocystis and T. clinides harboring three cyanobacterial species. In both species, the photosymbionts in the tunic of the parent colony were apparently captured by the tunic cells of the host and transferred to the embryos brooded in the tunic. The symbiont cells were then incorporated into the inner tunic of the embryo. This mode of transmission is essentially the same as that of T. miniatum harboring Prochloron in the tunic, although there are some differences among species in the timing of the release of the symbionts from the tunic cells. We suggest that the similar modes of vertical transmission are an example of convergent evolution caused by constraints in the distribution patterns of symbiont cells in the host colony.  相似文献   

4.
Abstract. Cellular components of the tunic were histologically examined in 3 pyrosome species representing all 3 genera of the order: Pyrosoma atlanticum, Pyrosomella verticillata , and Pyrostremma spinosum . Three cell types are distributed in the tunic. Tunic amebocytes, irregularly shaped and motile, often contain granules and/or phagosomes. Spherical tunic cells contain many round vesicles with eosinophilic and acidic materials. Tunic net cells form a cellular network in which their long filopodia connect with one another. The net cells are densely distributed just beneath the tunic surface lining the common cloacal cavity and may produce tension to maintain the colony shape. The presence of net cells suggests a phylogenetic relationship between pyrosomes and some aplousobranch ascidians. Test fibers are multicellular cords that run in the tunic and connect the zooids. In P. atlanticum , they are attached to they are attached to the epidermal cells of the zooids, and transverse cloacal muscles are attached to the other (proximal) side of the epidermal cells. The test fibers may mediate coordination of the zooids and control muscle contraction.  相似文献   

5.
It has long been known that metamorphosis of ascidian larvae is induced by exposure to adult tunic extract or larval-conditioned seawater. However, such a natural 'inducer' has not been identified, probably due to its very low concentration in organisms. Here we have succeeded in isolating the same metamorphosis-inducing substance from the larvae, the larval-conditioned seawater, and the adult tunic of the ascidian Halocynthia roretzi. Structural analysis revealed that this substance was identical to lumichrome. Lumichrome was active toward H. roretzi larvae, but inactive toward another ascidian larvae, suggesting that lumichrome is species-specific. Riboflavin (vitamin B2), from which lumichrome might be derived from, was found to be inactive in induction of larval metamorphosis. In addition, it was demonstrated that lumichrome is localized predominantly in the basal region of the adhesive organ and the posterior part of the larval trunk. Thus, we propose that lumichrome functions as a natural inducer for larval metamorphosis in H. roretzi. This is the first natural metamorphosis-inducing substance to be identified in ascidians.  相似文献   

6.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of prestreak and early primitive streak stages of the mouse embryo was studied in vitro by microinjecting horseradish peroxidase into single axial endoderm cells of 6.7-day-old embryos and tracing the labelled descendants either through gastrulation (1 day of culture) or to early somite stages (2 days of culture). Descendants of endoderm cells from the anterior half of the axis were found at the extreme cranial end of the embryo after 1 day and in the visceral yolk sac endoderm after 2 days, i.e. they were displaced anteriorly and anterolaterally. Descendants of cells originating over and near the anterior end of the early primitive streak, i.e. posterior to the distal tip of the egg cylinder, were found after 1 day over the entire embryonic axis and after 2 days in the embryonic endoderm at the anterior intestinal portal, in the foregut, along the trunk and postnodally, as well as anteriorly and posteriorly in the visceral yolk sac. Endoderm covering the posterior half of the early primitive streak contributed to postnodal endoderm after 1 day (at the late streak stage) and mainly to posterior visceral yolk sac endoderm after 2 days. Clonal descendants of axial endoderm were located after 2 days either over the embryo or in the yolk sac; the few exceptions spanned the caudal end of the embryo and the posterior yolk sac. The clonal analysis also showed that the endoderm layer along the posterior half of the axis of prestreak- and early-streak-stage embryos is heterogeneous in its germ layer fate. Whereas the germ layer location of descendants from anterior sites did not differ after 1 day from that expected from the initial controls (approx. 90% exclusively in endoderm), only 62% of the successfully injected posterior sites resulted in labelled cells exclusively in endoderm; the remainder contributed partially or entirely to ectoderm and mesoderm. This loss from the endoderm layer was compensated by posterior-derived cells that remained in endoderm having more surviving descendants (8.4 h population doubling time) than did anterior-derived cells (10.5 h population doubling time). There was no indication of cell death at the prestreak and early streak stages; at least 93% of the cells were proliferating and more than half of the total axial population were in, or had completed, a third cell cycle after 22 h culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Coral reef invertebrates that host phototrophic symbionts are thought to protect themselves and their symbionts with mycosporine-like amino acids (MAAs)-UV-absorbing substances that act as sunscreens (Dunlap, W. C., and J. M. Shick, 1998. J. Phycol. 34: 418-430). However, the histological distribution of MAAs in the host tissues has not yet been visualized. We have localized the UV-absorbing substances in the tissues of two colonial didemnid ascidians-Lissoclinum patella and Diplosoma sp.-that contain the symbiotic photo-oxygenic prokaryote Prochloron sp. Cross-sections of unfixed tissue from these ascidians were examined by UV-light microscopy at 320 or 330 nm, wavelengths at which UV light is absorbed by MAAs. Within the tunic, the gelatinous integument of the colony, UV light was exclusively absorbed by a particular type of cell, the tunic bladder cell. Tunic bladder cells with strong UV absorption were denser in the upper tunic, which lies over a colony's zooids, than in the basal tunic underlying the zooid. In the upper tunic, those cells with strong UV absorption were most dense near the surface. The tunic bladder cell is highly vacuolated, and the vacuole contains strong acid, which destabilizes MAAs. Furthermore, the UV-absorbing portion of tunic bladder cells seemed to be cup-shaped, indicating that the MAAs are not localized in the vacuole, but in the cytoplasm. These results strongly suggest that didemnid ascidians accumulate MAAs in tunic bladder cells as a protection against UV radiation.  相似文献   

8.
In chordates, obligate photosynthetic symbiosis has been reported exclusively in some colonial ascidians of the family Didemnidae. The vertical transmission of the symbionts is crucial in establishing the obligate symbiosis between the cyanobacteria and the host ascidians. The results of comparative surveys on the morphological processes of cyanobacterial transmission suggest the occurrence of convergent evolution of the vertical transmission in the host species harboring symbionts in the cloacal cavity. In Trididemnum species harboring cyanobacterial cells in the tunic, the symbiont cells are transported by the tunic cells to the tunic of embryos brooded in the tunic of the parent colony. The present study examined whether the mode of symbiont transmission is the same in host species harboring the symbionts in the tunic, regardless of host genera, or whether non-Trididemnum hosts have a different vertical transmission mode. Our results showed that the vertical transmission process in Lissoclinum midui was almost the same as in the Trididemnum species, supporting the occurrence of convergent evolution in the two distinct didemnid genera, that is, Trididemnum and Lissoclinum. High plasticity of the embryogenic process in didemnid ascidians may be important in developing the mechanism of vertical transmission; this assumption may also explain why the obligate cyanobacterial symbiosis has been exclusively established in didemnid ascidians among chordates.  相似文献   

9.
The ultrastructure of the trunk lateral line nerve of larval and adult lampreys was studied with transmission electron microscopy. We confirmed that lampreys' lateral line nerve lacks myelin. Nevertheless, all axons were wrapped by Schwann cell processes. In the larval nerve, gaps between Schwann cells were observed, where the axolemma was covered only by a basal lamina, indicating an earlier developmental stage. In the adult nerve, glial (Schwann cell) ensheathment was mostly complete. Additionally, we observed variable ratios of axons to Schwann cells in larval and adult preparations. In the larval nerve, smaller axons were wrapped by one Schwann cell. Occasionally, a single Schwann cell surrounded two axons. Larger axons were associated with two to five Schwann cells. In the adult nerve, smaller axons were surrounded by one, but larger axons by three to eight Schwann cells. The larval epineurium contained large adipose cells, separated from each other by single fibroblast processes. This layer of adipose tissue was reduced in adult preparation. The larval perineurium was thin, and the fibroblasts, containing large amounts of glycogen granules, were arranged loosely. The adult perineurium was thicker, consisting of at least three layers of fibroblasts separated by collagen fibrils. The larval and adult endoneurium contained collagen fibrils oriented orthogonally to each other. Both larval and adult lateral line nerves possessed a number of putative fascicles weakly defined by a thin layer of perineurial fibroblasts. These results indicate that after a prolonged larval stage, the lamprey lateral line nerve is subjected to additional maturation processes during metamorphosis. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
A new photosymbiotic didemnid, Lissoclinum midui sp. nov., is described from coral reefs in the Ryukyu Archipelago, Japan. Colonies of the didemnid are green due to Prochloron algal symbionts, which are distributed solely in the tunic. The new species is placed in Lissoclinum because of its uncoiled vas deferens and the presence of globular spicules. However, two unique characters distinguish this species from all other didemnid ascidians: the absence of a common cloacal system, and the presence of an unknown organ in the bottom wall of the branchial sac. In the phylogenetic trees inferred from partial sequences of cytochrome c oxidase subunit I (COI) gene, the new species diverged at the basal point of the clade of four photosymbiotic Lissoclinum species analyzed here.  相似文献   

11.
The morphology of the newly hatched larva of Carcinonemertes epialti Coe has been examined by light and electron microscopy. The newly hatched larva is covered with cilia and measures about 110 μm in length. Four types of epidermal cells are recognizable: (1) Multiciliated cells, (2) vacuolated cells, (3) mucous cells, and (4) “knob cells”. The knob cells protrude from the posterior end of the larva and contain granules and bundles of microfilaments. The gut is incomplete and is located ventral to the bipartite proboscis. A bilobed brain and two subepidermal ocelli are found in the anterior end of the larva. The anterior and posterior cirri are composed of long, tightly appressed cilia that arise from an invagination of the epidermis at each end of the larva. The anterior cirrus is surrounded by two types of glandular cells. It is proposed that the knob cells have a role in larval attachment, combining the functions of the adhesive cells and anchor cells described in the duo-gland system of turbellarians. The cirri are believed to be larval sensory structures that function in substrate selection. Histological and ultrastructural observations suggest that the larvae of Carcinonemertes are relatively long lived and develop into juveniles without a drastic metamorphosis.  相似文献   

12.
The dorsal surface of the tongue of the little tern, Sterna albifrons, has a distinctive anterior region for five-sixths of its length and a terminal posterior region. The anterior region observed by scanning electron microscopy is distinguished along its forward half by a median line from which median papillae protrude. The hind half of the anterior region has a median sulcus without papillae. The deciduous epithelium on both sides of the median line and sulcus bears scattered epithelial protrusions. The posterior lingual region has neither median papillae nor deciduous epithelium. So-called giant conical papillae are located in a transverse row between anterior and posterior regions. Delicate microridges adorn the surfaces of all outer epithelial cells in both regions. Examination of the dorsal lingual epithelium by light and electron microscopy provides histologic and cytologic criteria for distinguishing anterior and posterior regions. Basal cells are nearly alike throughout the dorsal epithelium. Intermediate layer cells of the anterior region contain numerous tonofibrils in electron-dense bundles composed of 10 nm tonofilaments. The outer layer is composed of electron-dense, well-keratinized cells, and electron-lucent epithelial protrusions are present on the exposed surface of the outermost cells. Median papillae are composed of typical keratinized cells, which are nearly filled with keratin filaments. Intermediate layer cells in the posterior region of the tongue are nearly filled with unbundled tonofilaments. There is only a very thin outer keratinized layer in this region.  相似文献   

13.
The segmental origin and migratory pattern of neural crest cells at the trunk level of avian embryos was studied, with special emphasis on the formation of the dorsal root ganglia (DRG) which organize in the anterior half of each somite. Neural crest cells were visualized using the quail-chick marker and HNK-1 immunofluorescence. The migratory process turned out to be closely correlated with somitic development: when the somites are epithelial in structure few labeled cells were found in a dorsolateral position on the neural tube, uniformly distributed along the craniocaudal axis. Following somitic dissociation into dermomyotome and sclerotome labeled cells follow defined migratory pathways restricted to each anterior somitic half. In contrast, opposite the posterior half of the somites, cells remain grouped in a dorsolateral position on the neural tube. The fate of crest cells originating at the level of the posterior somitic half was investigated by grafting into chick hosts short segments of quail neural primordium, which ended at mid-somitic or at intersomitic levels. It was found that neural crest cells arising opposite the posterior somitic half participate in the formation of the DRG and Schwann cells lining the dorsal and ventral root fibers of the same somitic level as well as of the subsequent one, whereas those cells originating from levels facing the anterior half of a somite participate in the formation of the corresponding DRG. Moreover, crest cells from both segmental halves segregate within each ganglion in a distinct topographical arrangement which reflects their segmental origin on the neural primordium. Labeled cells which relocate from posterior into anterior somitic regions migrate longitudinally along the neural tube. Longitudinal migration of neural crest cells was first observed when the somites are epithelial in structure and is completed after the disappearance of the last cells from the posterior somitic region at a stage corresponding to the organogenesis of the DRG.  相似文献   

14.
Among other characteristics a trimeric coelomic compartmentation consisting of an anterior protocoel, followed by a mesocoel and a posterior metacoel is traditionally believed to substantiate the sister-group relationship between Lophophorata and Deuterostomia, together forming the Radialia. As molecular data cannot support this hypothesis a reanalysis of the coelomic cavities in Phoronida is undertaken, because corresponding coelomic compartmentation is widely accepted to support the Radialia hypothesis. A coelomic cavity can be recognized on the ultrastructural level because its lining is a true epithelium with polarized cells interconnected by apical adherens junctions. This study reveals that neither in larval nor adult Phoronis muelleri (Phoronida) an anterior cavity with such a lining is present. What on the light microscopic level leads to the impression of a cavity inside the larval episphere, actually is an enlarged subepidermal extracellular matrix with an amorphous, presumably gel-like filling, into which several muscle cells are embedded. Larvae, thus, possess only one coelomic cavity, the large trunk coelom of the larva which is adopted in the adult organization. The second coelomic cavity of adult P. muelleri, the lophophore coelom, develops as a double-layer of epithelialized mesodermal cells at the base of the adult tentacle buds and becomes fluid filled during metamorphosis. Like the larval episphere, larval tentacles and most parts of the blastocoel are filled by an amorphous matrix. Reanalysis of the literature and comparison with Brachiopoda and Bryozoa allows the hypothesis that a protocoel is lacking in all Lophophorata, and that merely two unpaired coelomic cavities, one tentacle and one trunk coelom, can be assumed for the ground pattern of this taxon. These results do not provide further evidence for the Radialia hypothesis, but also do not contradict it. Accepted: 28 August 2000  相似文献   

15.
The penis of the silkmoth, Bombyx mori, consists of two parts covered with cuticle, the corpus penis and crus penis, and a third part, the radix penis, without a cuticle but surrounded by a thick sphincter. The radix penis is divisible into anterior and posterior parts. The ductus (d.) ejaculatorius passing through the penis has no secretory cells. In the anterior radix penis, the wall of the d. ejaculatorius is thin and without folds; in the posterior section, it is thick, with folds in its lumen. The glandula (g.) prostatica is divisible into anterior and posterior parts according to differences in the histological and morphological characteristics of the cells and their secretions, which contain many heterogeneous substances. In the anterior g. prostatica, secretions accumulate separately in the anterior and posterior sections before ejaculation. Unlike the posterior region, the anterior region displays a large mass(es) at the periphery of the lumen along the secretory cell layer. Judging from staining properties, the pearly body and the first layer of the spermatophore wall, which, after copulation, form in the female bursa copulatrix, seem to be derived from the secretions of the anterior and posterior regions of the g. prostatica, respectively. The secretion of the posterior g. prostatica contains initiatorin, which acts as a sperm-activating factor in the inner and outer matrices of the spermatophore. An ejaculatory valve is found between the radix penis and the g. prostatica. The opening of this valve is regulated by the surrounding sphincter, thus impeding the back-flow of secretions and seminal fluid in the radix penis and resulting in their transport outwards during ejaculation. The musculature of the d. ejaculatorius and the corpus penis promotes further transport of these secretions into the female bursa copulatrix.  相似文献   

16.
Summary The development of the pedicle in the articulate brachiopod Terebratalia transversa has been examined by electron microscopy. The posterior half of the free-swimming larva comprises a non-ciliated pedicle lobe that contains the primordium of the juvenile pedicle at its distal end. During settlement at five to six days post-fertilization, the pedicle lobe secretes a sticky sheet that attaches the larva to the substratum. As metamorphosis proceeds, the epithelium in the posterior half of the pedicle lobe produces a thin overlying cuticle, and the pedicle primordium develops into a stalk-like anchoring organ. The juvenile pedicle protrudes through the gape that occurs between the posterior margins of the shell valves. A cup-like canopy, called the pedicle capsule, lines the posterior end of the shell and surrounds the newly formed pedicle. The core of the juvenile pedicle is filled with a solid mass of connective tissue. Numerous tonofibrils occur in the pedicle epithelium, and the overlying cuticle consists of amorphous material covered by a thin granular fringe. By one year post-metamorphosis, a body cavity develops anterior to the pedicle. Two pairs of adjustor muscles extend from the posterior end of the shell and traverse the cavity to insert in the pedicle. The connective tissue core of the pedicle in sub-adult specimens lacks muscle cells but contains numerous fibroblasts and collagen fibers. Three regions are recognizable in the connective tissue compartment of the adult pedicle: a subepithelial layer of non-fibrous connective tissue, a central fibrous zone, and a proximal mass of tissue that resembles cartilage.List of abbreviations as adhesive sheet - bc body cavity - bv brachial valve of shell - cf collagen fibrils - ct connective tissue - cu cuticle - di diductor muscle - ec epithelial cell - f fibroblast - fz fibrous zone - g gut - gc granular cell - gd gastric diverticulum - ht hinge tooth - ia interarea of pedicle valve - icl inner cuticular layer - lo lophophore - lu lumen of gut - m mesenchyme - ma mantle - ml mantle lobe - ocl outer cuticular layer - p periostracum - pc pedicle capsule - pce pedicle capsule epithelium - pcl pedicle collar of shell - pcn pedicle connectives - pd pedicle - pe pedicle epithelium - pl pedicle lobe - pv pedicle valve of shell - pzc proximal zone of cartilage-like tissue - s substratum - sel subepithelial layer - t tendon - tf tonofibril - vam ventral adjustor muscle  相似文献   

17.
M Cioffi 《Tissue & cell》1979,11(3):467-479
Light and electron microscopic examination of the midgut of Manduca sexta has shown that the organization of this tissue is more complex than was originally believed. The midgut can be divided into anterior, middle and posterior regions on the basis of the pattern of folding of the epithelial sheet, and variations in the structure of goblet and columnar cells which occur along its length. The columnar cells show gradual structural changes form the anterior to the posterior end of the midgut. For example, the microvilli in the anterior region form a dense, interconnecting network from which vesicles break off. This organization becomes less obvious through the middle region, until by the posterior region each microvillus is unconnected to adjacent microvilli along its entire length and vesicles are no longer produced. Two distinct types of goblet cells are found. In the anterior and middle regions the goblet cells have a large basally located cavity, but in the posterior region the cavity occupies only the apical half of the cell. In both cases the cavity is formed by invagination of the apical membrane, which is studded with small particles implicated in active ion transport. In the anterior and middle regions this membrane is closely associated with mitochondria, but not in the posterior region. The significance of the observed structural differences is discussed in relation to active ion transport.  相似文献   

18.
The ascidian Cystodytes dellechiajei (Della Valle, 1877) (phylum Chordata, class Ascidiacea, family Polycitoridae) is a colonial tunicate that inhabits benthic rock environments in the Atlantic, Pacific and Indian Oceans, as well as the Mediterranean Sea. Its life cycle has two phases, the adult sessile colony and the free-living larva. Both adult zooids and larvae are surrounded by a protective tunic that contains several eukaryotic cell lines, is composed mainly of acidic mucopolysacharides associated with collagen and elastin-like proteins, and is covered by a thin cuticle. The microbiota associated with the tunic tissues of adult colonies and larva of C. dellechiajei has been examined by optical, confocal and electron microscopy and by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), and 16S rRNA gene clone library analysis. Microscopy analyses indicated the presence inside the tunic, both for the adult and the larva, of a dense community of Bacteria while only the external surface of colony cuticle was colonized by diatoms, rodophyte algae and prokaryotic-like epiphytes. Transmission electron microscopy showed tunic eukaryotic cells that were engulfing and lysing bacteria. 16S rRNA gene analyses (DGGE and clone libraries) and FISH indicated that the community inside the tunic tissues of the adults and larvae was dominated by Alphaproteobacteria. Bacteria belonging to the phyla Gammaproteobacteria and Bacteroidetes were also detected in the adults. Many of the 16S rRNA gene sequences in the tunic tissues were related to known aerobic anoxygenic phototrophs (AAP), like Roseobacter sp. and Erythrobacter sp. In order to check whether the gene pufM, coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis, was being expressed inside the ascidian tissues, two libraries, one for an adult colony and one for larva, of cDNA from the expressed pufM gene were also constructed. The sequences most frequently (64% for colony and 67% for larva) retrieved from these libraries presented > 90% aa identity with the pufM gene product of the Roseobacter-like group, a cluster of AAP widely detected in marine planktonic environments.  相似文献   

19.
Spermatophores in a squid, Todarodes pacificus, were observed by light and electron microscopy and were further analyzed by X-ray microanalysis (XMA) of frozen thin sections. Each spermatophore consists of a sperm mass, a cement body, an ejaculatory apparatus, and some fluid materials, all of which are covered by an outer tunic. The outer tunic consists of about 20 membranous layers, each containing straight, parallel microgrooves. Each layer's microgroove pattern is roughly in an orthogonal arrangement with respect to the next layer's pattern. The sperm mass, which is the only cellular component, consists of a sperm rope which is coiled more than 500 times. Most of the spermatozoa in the rope are arranged regularly and are enveloped in materials which are well-stained by Alcian blue. The cement body is located between the sperm mass and ejaculatory apparatus and has a hard outer shell with an arrowhead-like structure, presumably for penetration into the tissue of the female. Calcium and phosphorus are present in the shell of the cement body, which also has an affinity for alizarin red. The ejaculatory apparatus consists of two tubes, designated as the inner tunic and the inner membrane. After the spermatophoric reaction, a sperm reservoir is formed at the anterior end of the extruded and inverted ejaculatory apparatus. The sperm reservoir, which encases the sperm mass, is composed of the cement body at the anterior end and the inner tunic of the ejaculatory apparatus at the posterior end.  相似文献   

20.
The marine cyanobacterium Prochloron is a unique photosynthetic organism that lives in obligate symbiosis with colonial ascidians. We compared Prochloron harbored in four different host species and cultured Prochlorothrix by means of spectroscopic measurements, including time-resolved fluorescence, to investigate host-induced differences in light-harvesting strategies between the cyanobacteria. The light-harvesting efficiency of photosystems including antenna Pcb, PS II-PS I connection, and pigment status, especially that of PS I Red Chls, were different among the four samples. We also discuss relationships between these observed characteristics and the light conditions, to which Prochloron cells are exposed, influenced by distribution pattern in the host colonies, presence or absence of tunic spicules, and microenvironments within the ascidians' habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号