首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of the opening and closing of individual ion-conducting channels in lipid bilayers doped with small amounts of excitability-inducing material (EIM) are determined from discrete fluctuations in ionic current. The kinetics for the approach to steady-state conductance during voltage clamp are determined for lipid bilayers containing many EIM channels. The two sets of measurements are found to be consistent, verifying that the voltage-dependent conductance of the many-channel EIM system arises from the opening and closing of individual EIM channels. The opening and closing of the channels are Poisson processes. Transition rates for these processes vary exponentially with applied potential, implying that the energy difference between the open and closed states of an EIM channel is linearly proportional to the transmembrane electric field. A model incorporating the above properties of the EIM channels predicts the observed voltage dependence of ionic conductance and conductance relaxation time, which are also characteristic of natural electrically excitable membranes.  相似文献   

2.
When sufficiently small amounts of excitability-inducing material (EIM) are added to a bimolecular lipid membrane, the conductance is limited to a few discrete levels and changes abruptly from one level to another. From our study of these fluctuations, we have concluded that the EIM-doped bilayer contains ion-conducting channels capable of undergoing transitions between two states of different conductance. The difference in current between the "open" and "closed" states is directly proportional to the applied membrane potential, and corresponds to a conductance of about 3 x 10-10 ohm-1. The fraction of the total number of channels that is open varies from unity to zero as a function of potential. The voltage-dependent opening and closing of channels explains the negative resistance observed for bimolecular lipid membranes treated with greater amounts of EIM.  相似文献   

3.
Single channel currents of sodium channels purified from rat brain and reconstituted into planar lipid bilayers were recorded. The kinetics of channel gating were investigated in the presence of batrachotoxin to eliminate inactivation and an analysis was conducted on membranes with a single active channel at any given time. Channel opening is favored by depolarization and is strongly voltage dependent. Probability density analysis of dwell times in the closed and open states of the channel indicates the occurrence of one open state and several distinct closed states in the voltage (V) range-120 mV less than or equal to V less than or equal to +120 mV. For V less than or equal to 0, the transition rates between stages are exponentially dependent on the applied voltage, as described in mouse neuroblastoma cells (Huang, L. M., N. Moran, and G. Ehrenstein. 1984. Biophysical Journal. 45:313-322). In contrast, for V greater than or equal to 0, the transition rates are virtually voltage independent. Autocorrelation analysis (Labarca, P., J. Rice, D. Fredkin, and M. Montal. 1985. Biophysical Journal. 47:469-478) shows that there is no correlation in the durations of successive open or closing events. Several kinetic schemes that are consistent with the experimental data are considered. This approach may provide information about the mechanism underlying the voltage dependence of channel activation.  相似文献   

4.
The effects of ionic strength (10-1,000 mM) on the gating of batrachotoxin-activated rat brain sodium channels were studied in neutral and in negatively charged lipid bilayers. In neutral bilayers, increasing the ionic strength of the extracellular solution, shifted the voltage dependence of the open probability (gating curve) of the sodium channel to more positive membrane potentials. On the other hand, increasing the intracellular ionic strength shifted the gating curve to more negative membrane potentials. Ionic strength shifted the voltage dependence of both opening and closing rate constants of the channel in analogous ways to its effects on gating curves. The voltage sensitivities of the rate constants were not affected by ionic strength. The effects of ionic strength on the gating of sodium channels reconstituted in negatively charged bilayers were qualitatively the same as in neutral bilayers. However, important quantitative differences were noticed: in low ionic strength conditions (10-150 mM), the presence of negative charges on the membrane surface induced an extra voltage shift on the gating curve of sodium channels in relation to neutral bilayers. It is concluded that: (a) asymmetric negative surface charge densities in the extracellular (1e-/533A2) and intracellular (1e-/1,231A2) sides of the sodium channel could explain the voltage shifts caused by ionic strength on the gating curve of the channel in neutral bilayers. These surface charges create negative electric fields in both the extracellular and intracellular sides of the channel. Said electric fields interfere with gating charge movements that occur during the opening and closing of sodium channels; (b) the voltage shifts caused by ionic strength on the gating curve of sodium channels can be accounted by voltage shifts in both the opening and closing rate constants; (c) net negative surface charges on the channel's molecule do not affect the intrinsic gating properties of sodium channels but are essential in determining the relative position of the channel's gating curve; (d) provided the ionic strength is below 150 mM, the gating machinery of the sodium channel molecule is able to sense the electric field created by surface changes on the lipid membrane. I propose that during the opening and closing of sodium channels, the gating charges involved in this process are asymmetrically displaced in relation to the plane of the bilayer. Simple electrostatic calculations suggest that gating charge movements are influenced by membrane electrostatic potentials at distances of 48 and 28 A away from the plane of the membrane in the extracellular sides of the channel, respectively.  相似文献   

5.
Two-dimensional probability density analysis of single channel current recordings was applied to two purified channel proteins reconstituted in planar lipid bilayers: Torpedo acetylcholine receptors and voltage-sensitive sodium channels from rat brain. The information contained in the dynamic history of the gating process, i.e., the time sequence of opening and closing events was extracted from two-dimensional distributions of transitions between identifiable states. This approach allows one to identify kinetic models consistent with the observables. Gating of acetylcholine receptors expresses "memory" of the transition history: the receptor has two channel open (O) states; the residence time in each of them strongly depends on both the preceding open time and the intervening closed interval. Correspondingly, the residence time in the closed (C) states depends on both the preceding open time and the preceding closed time. This result confirms the scheme that considers, at least, two transition pathways between the open and closed states and extends the details of the model in that it defines that the short-lived open state is primarily entered from long-lived closed states while the long-lived open state is accessed mainly through short-lived closed states. Since ligand binding to the acetylcholine-binding sites is a reaction with channel closed states, we infer that the longest closed state (approximately 19 ms) is unliganded, the intermediate closed state (approximately 2 ms) is singly liganded and makes transitions to the short open state (approximately 0.5 ms) and the shortest closed state (approximately 0.4 ms) is doubly liganded and isomerizes to long open states (approximately 5 ms). This is the simplest interpretation consistent with available data. In contrast, sodium channels modified with batrachotoxin to eliminate inactivation show no correlation in the sequence of channel opening and closing events, i.e., have no memory of the transition history. This result is, therefore, consistent with any kinetic scheme that considers a single transition pathway between open and closed states, and confirms the C-C-O model previously inferred from one-dimensional distribution analysis. The strategy described should be of general validity in the analysis of single channel events from channel proteins in both natural and reconstituted membranes.  相似文献   

6.
Estimating kinetic constants from single channel data.   总被引:35,自引:14,他引:21       下载免费PDF全文
The process underlying the opening and closing of ionic channels in biological or artificial lipid membranes can be modeled kinetically as a time-homogeneous Markov chain. The elements of the chain are kinetic states that can be either open or closed. A maximum likelihood procedure is described for estimating the transition rates between these states from single channel data. The method has been implemented for linear kinetic schemes of fewer than six states, and is suitable for nonstationary data in which one or more independent channels are functioning simultaneously. It also provides standard errors for all estimates of rate constants and permits testing of smoothly parameterized subhypotheses of a general model. We have illustrated our approach by analysis of single channel data simulated on a computer and have described a procedure for analysis of experimental data.  相似文献   

7.
When nicotinic acetylcholine receptors are reconstituted into lipid bilayers lacking cholesterol, agonists no longer stimulate cation flux. The kinetics of this process are difficult to study because variations in vesicle morphology cause errors in flux measurements. We developed a new stopped-flow fluorescence assay to study activation independently of vesicle morphology. When receptors were rapidly mixed with agonist plus ethidium, the earliest fluorescence increase reported the fraction of channels that opened and their apparent rate of fast desensitization. These processes were absent when the receptor was reconstituted into dioleoylphosphatidylcholine or into a mixture of that lipid with dioleoylphosphatidic acid (12 mol%), even though a fluorescent agonist reported that resting-state receptors were still present. The agonist-induced channel opening probability increased with bilayer cholesterol, with a midpoint value of 9 +/- 1.7 mol% and a Hill coefficient of 1.9 +/- 0.69, reaching a plateau above 20-30 mol% cholesterol that was equal to the native value. On the other hand, the observed fast desensitization rate was comparable to that for native membranes from the lowest cholesterol concentration examined (5 mol%). Thus the ability to reach the open state after activation varies with the cholesterol concentration in the bilayer, whereas the rate of the open state to fast desensitized state transition is unaffected. The structural basis for this is unknown, but an interesting corollary is that the channels of newly synthesized receptors are not fully primed by cholesterol until they are inserted into the plasma membrane--a novel form of posttranslational processing.  相似文献   

8.
A detailed characterization of the properties of the channel formed by tetanus toxin in planar lipid bilayers is presented. Channel formation proceeds at neutral pH. However, an acidic pH is required to detect the presence of channels in the membrane rapidly and effectively. Acid pH markedly lowers the single-channel conductance, for phosphatidylserine at 0.5 M KCl gamma = 89 pS at pH 7.0 while at pH 4.8, gamma = 30 pS. The toxin channel is cation selective without significant selectivity between potassium and sodium (gamma [K+]/gamma [Na+] greater than or equal to 1.35). In all the lipids studied gamma is larger at positive than at negative voltages. The toxin channel is voltage dependent both at neutral and acidic pH: for phosphatidylserine membranes, the probability of the channel being open is much greater at positive than at negative voltage. In different phospholipids the channel exhibits different voltage dependence. In phosphatidylserine membranes the channel is inactivated at negative voltages, whereas in diphytanoylphosphatidylcholine membranes channels are more active at negative voltages than at positive. The presence of acidic phospholipids in the bilayers increases both the single-channel conductance as well as the probability of the channel being open at positive voltage. A subconductance state is readily identifiable in the single-channel recordings. Accordingly, single-channel conductance histograms are best fitted with a sum of 3 Gaussian distributions corresponding to the closed state, the open subconductance state and the full open state. Channel activity occurs in bursts of openings separated by long closings. Probability density analysis of the open dwell times of the toxin channel indicate the existence of a single open state with a lifetime greater than or equal to 1 ms in all lipids studied. Analysis of intra-bursts closing lifetimes reveals the existence of two components; the slow component is of the order of 1 ms, the fast one is less than or equal to 0.5 ms. The channel activity induced by tetanus toxin in lipid bilayers suggests a mechanism for its neurotoxicity: a voltage dependent, cation selective channel inserted in the postsynaptic membrane would lead to continuous depolarization and, therefore, persistent activation of the postsynaptic cell.  相似文献   

9.
Discrete conductance fluctuations in lipid bilayer protein membranes   总被引:11,自引:5,他引:6       下载免费PDF全文
Discrete fluctuations in conductance of lipid bilayer membranes may be observed during the initial stages of membrane interaction with EIM ("excitability inducing material"), during destruction of the EIM conductance by proteolysis, and during the potential-dependent transitions between low and high conductance states in the "excitable" membranes. The discrete conductance steps observed during the initial reaction of EIM with the lipid membranes are remarkably uniform, even in membranes of widely varying lipid composition. They range only from 2 to 6 x 10-10 ohm-1 and average 4 x 10-10 ohm-1. Steps found during destruction of the EIM conductance by proteolysis are somewhat smaller. The transition between high conductance and low conductance states may involve steps as small as 0.5 x 10-10 ohm-1. These phenomena are consistent with the formation of a stable protein bridge across the lipid membrane to provide a polar channel for the transport of cations. T6he uniform conductance fluctuations observed during the formation of these macromolecular channels may indicate that the ions in a conductive channel, in its open state, are largely protected from the influence of the polar groups of the membrane lipids. Potential-dependent changes in conductance may be due to configurational or positional changes in the protein channel. Differences in lipid-lipid and lipid-macromolecule interactions may account for the variations in switching kinetics in various membrane systems.  相似文献   

10.
As shown earlier, phytotoxins produced by Pseudomonas syringae pv. syringae form ion channels of "small" and "large" conductance when incorporated into planar lipid membranes. The multilevel conductance is due to cluster organization of the channels (Kaulin et al., 1998; Gurnev et al., 2002). In this study the kinetic parameters of syringomycin E (SRE) and syringostatin A (SSA) channels in negatively charged bilayer lipid membranes were estimated. The average time of open state of the small channels (t(s)(open)) did not depend on transmembrane voltage (in the range of +/- 200 mV). The channel characteristics differed between two phytotoxins: the t(s)(open) for the SRE-channels was much larger than that for SSA-channels. An energetic diagram with two non-conducting states illustrating the formation of the small channel is proposed to explain the voltage independence of the kinetic parameters. The probability for synchronous functioning of small channels with SSA was higher than that with SRE. To analyse the role of the clusters in the biological activities of SRE and SSA, we estimated the cluster contribution to a net transmembrane currents to be 60 and 90%, respectively.  相似文献   

11.
Gramicidin A (gA) molecules were covalently linked with a dioxolane ring. Dioxolane-linked gA dimers formed ion channels, selective for monovalent cations, in planar lipid bilayers. The main goal of this study was to compare the functional single ion channel properties of natural gA and its covalently linked dimer in two different lipid bilayers and HCl concentrations (10-8000 mM). Two ion channels with different gating and conductance properties were identified in bilayers from the product of dimerization reaction. The most commonly observed and most stable gramicidin A dimer is the main object of this study. This gramicidin dimer remained in the open state most of the time, with brief closing flickers (tau(closed) approximately 30 micros). The frequency of closing flickers increased with transmembrane potential, making the mean open time moderately voltage dependent (tau(open) changed approximately 1.43-fold/100 mV). Such gating behavior is markedly different from what is seen in natural gA channels. In PEPC (phosphatidylethanolamine-phosphatidylcholine) bilayers, single-channel current-voltage relationships had an ohmic behavior at low voltages, and a marked sublinearity at relatively higher voltages. This behavior contrasts with what was previously described in GMO (glycerylmonooleate) bilayers. In PEPC bilayers, the linear conductance of single-channel proton currents at different proton concentrations was essentially the same for both natural and gA dimers. g(max) and K(D), obtained from fitting experimental points to a Langmuir adsorption isotherm, were approximately 1500 pS and 300 mM, respectively, for both the natural gA and its dimer. In GMO bilayers, however, proton affinities of gA and the dioxolane-dimer were significantly lower (K(D) of approximately 1 and 1.5 M, respectively), and the g(max) higher (approximately 1750 and 2150 pS, respectively) than in PEPC bilayers. Furthermore, the relationship between single-channel conductance and proton concentration was linear at low bulk concentrations of H+ (0.01-2 M) and saturated at concentrations of more than 3 M. It is concluded that 1) The mobility of protons in gramicidin A channels in different lipid bilayers is remarkably similar to proton mobilities in aqueous solutions. In particular, at high concentrations of HCl, proton mobilities in gramicidin A channel and in solution differ by only 25%. 2) Differences between proton conductances in gramicidin A channels in GMO and PEPC cannot be explained by surface charge effects on PEPC membranes. It is proposed that protonated phospholipids adjacent to the mouth of the pore act as an additional source of protons for conduction through gA channels in relation to GMO bilayers. 3) Some experimental results cannot be reconciled with simple alterations in access resistance to proton flow in gA channels. Said differences could be explained if the structure and/or dynamics of water molecules inside gramicidin A channels is modulated by the lipid environment and by modifications in the structure of gA channels. 4) The dioxolane ring is probably responsible for the closing flickers seen in the dimer channel. However, other factors can also influence closing flickers.  相似文献   

12.
The hypothesis that specific combinations of DC and low frequency AC magnetic fields at so-called cyclotron-resonance conditions could affect the transport of ions through ion channels, or alter the kinetics of ion channels (opening and closing rates), has been tested. As a model system, the ion channels formed by gramicidin A incorporated in lipid bilayer membranes were studied. No significant changes in channel conductance, average lifetime, or formation rate as a function of applied fields could be detected over a wide range of frequencies and field strengths. Experiments were carried out to measure the time-resolved single-channel events and the average conductances of many-channel events in the presence of K+ and H+ ions. The channel blocking effect of Ca++ was also studied. © 1993 Wiley-Liss. Inc.  相似文献   

13.
CLIC1 (NCC27) is an unusual, largely intracellular, ion channel that exists in both soluble and membrane-associated forms. The soluble recombinant protein can be expressed in Escherichia coli, a property that has made possible both detailed electrophysiological studies in lipid bilayers and an examination of the mechanism of membrane integration. Soluble E. coli-derived CLIC1 moves from solution into artificial bilayers and forms chloride-selective ion channels with essentially identical conductance, pharmacology, and opening and closing kinetics to those observed in CLIC1-transfected Chinese hamster ovary cells. The process of membrane integration of CLIC1 is pH-dependent. Following addition of protein to the trans solution, small conductance channels with slow kinetics (SCSK) appear in the bilayer. These SCSK modules then appear to undergo a transition to form a high conductance channel with fast kinetics. This has four times the conductance of the SCSK and fast kinetics that characterize the native channel. This suggests that the CLIC1 ion channel is likely to consist of a tetrameric assembly of subunits and indicates that despite its size and unusual properties, it is able to form a completely functional ion channel in the absence of any other ancillary proteins.  相似文献   

14.
Dihydropyridine receptors were purified from rabbit skeletal muscle transverse tubule membranes and incorporated into planar lipid bilayers. Calcium channels from both the purified dihydropyridine receptor preparation and the intact transverse tubule membranes exhibited two sizes of unitary currents, corresponding to conductances of 7 +/- 1 pS and 16 +/- 3 pS in 80 mM BaCl2. Both conductance levels were selective for divalent cations over monovalent cations and anions. Cadmium, an inorganic calcium channel blocker, reduced the single channel conductance of calcium channels from the purified preparation. The organic calcium channel antagonist nifedipine reduced the probability of a single channel being open with little effect on the single channel conductance. The presence of two conductance levels in both the intact transverse tubule membranes and the purified dihydropyridine receptor preparation suggests that the calcium channel may have multiple conductance levels or that multiple types of calcium channels with closely related structures are present in transverse tubule membranes.  相似文献   

15.
Fractal and Markov behavior in ion channel kinetics   总被引:1,自引:0,他引:1  
Kinetic analysis of ion channel recordings attempts to distinguish the number and lifetimes of channel molecular states. Most kinetic analysis assumes that the lifetime of each state is independent of previous channel history, so that open and closed durations are Markov processes whose probability densities are sums of exponential decays. An alternative approach assumes that channel molecules have many configurtions with widely varying lifetimes. Rates of opening and closing then vary with the time scale of observation, leading to fractal kinetics. We have examined kinetic behavior in two types of channels from human and avian fibroblasts, using a maximum likehood method to test the dependence of rates on observational time scale. For both channels, openings showed mixed fractal and Markov behavior, while closings gave mainly fractal kinetics.  相似文献   

16.
Batrachotoxin-activated rat brain Na+ channels were reconstituted in neutral planar phospholipid bilayers in high ionic strength solutions (3 M NaCl). Under these conditions, diffuse surface charges present on the channel protein are screened. Nevertheless, the addition of extracellular and/or intracellular Ba2+ caused the following alterations in the gating of Na+ channels: (a) external (or internal) Ba2+ caused a depolarizing (or hyperpolarizing) voltage shift in the gating curve (open probability versus membrane potential curve) of the channels; (b) In the concentration range of 10-120 mM, extracellular Ba2+ caused a larger voltage shift in the gating curve of Na+ channels than intracellular Ba2+; (c) voltage shifts of the gating curve of Na+ channels as a function of external or internal Ba2+ were fitted with a simple binding isotherm with the following parameters: for internal Ba2+, delta V0.5,max (maximum voltage shift) = -11.5 mV, KD = 64.7 mM; for external Ba2+, delta V0.5,max = 13.5 mV, KD = 25.8 mM; (d) the change in the open probability of the channel caused by extracellular or intracellular Ba2+ is a consequence of alterations in both the opening and closing rate constants. Extracellular and intracellular divalent cations can modify the gating kinetics of Na+ channels by a specific modulatory effect that is independent of diffuse surface potentials. External or internal divalent cations probably bind to specific charges on the Na+ channel glycoprotein that modulate channel gating.  相似文献   

17.
Vibrio cholerae EL Tor cytolysin, a water-soluble protein with a molecular mass of 63 kDa, forms small pores in target cell membranes. In this communication, planar lipid bilayers under voltage clamp conditions were used to investigate the geometric properties of the pores. It was established that all cytolysin channels were inserted into membranes with the same orientation. Sharp asymmetry in the I-V curve of fully open cytolysin channels persisting at high electrolyte concentrations indicated asymmetry in the geometry of the channel lumen. Using the nonelectrolyte exclusion method, evidence was obtained that the cis opening of the channel had a larger diameter (< or = 1.9 nm) than the trans opening (< or = 1.6 nm). The channel lumen appeared constricted, with a diameter of < or = 1.2 nm. Cup-shaped lumen geometry was deduced for both channel openings, which appeared to be connected to each other via a central narrow part. The latter contributed significantly to the total electrical resistance and determined the discontinuous character of channel filling with nonelectrolytes. Comparisons of the properties of pores formed by cytolysins of two V. cholerae biotypes (EL Tor and non-O1) indicated that the two ion channels possessed a similar geometry.  相似文献   

18.
Magainin 2, a polycationic peptide, displays bactericidal and tumoricidal activity, presumably interacting with negatively charged phospholipids in the membrane hosts. In this work, we investigate the role played by the lipid head-group in the interactions and self-association of magainin 2 during pore formation in lipid bilayers. Two methods are used: single-channel and macroscopic incorporation into planar lipid membranes. Single-channel incorporation showed that magainin 2 did not interact with zwitterionic membranes, while the addition of negatively charged dioleoylphosphatidylglycerol to the membrane leads to channel formation. On the other hand, magainin 2 did not form channels in membranes made up of dioleoylphosphatidylserine (DOPS), although the addition of ergosterol to DOPS membranes leads to channel formation. This finding could indicate that ergosterol may be a possible target of magainin 2 in fungal membranes. Further support for this hypothesis comes from experiments in which the addition of ergosterol to palmitoyloleoylphosphatidylcholine membranes induced channel formation. Besides the role of negatively charged membranes, this study has shown that magainin 2 also forms channels in membranes lacking heads, such as monoolein and oxidized cholesterol, indicating an interaction of magainin 2 with acyl chains and cholesterol, respectively. This finding provides further evidence that peptide binding and assembly in lipid membranes is a complex process driven by electrostatic and/or hydrophobic interactions, depending on the structure of the peptide and the membrane composition.  相似文献   

19.
20.
The effects of external Zn+2 and other divalent cations on K channels in squid giant axons were studied. At low concentration (2 mM) Zn+2 slows opening kinetics without affecting closing kinetics. Higher concentrations (5-40 mM) progressively slow opening and speed channel closing to a lesser degree. In terms of "shifts," opening kinetics are strongly shifted to the right on the voltage axis, and off kinetics much less so. The shift of the conductance-voltage relation along the axis is intermediate. Zinc's kinetic effects show little sign of saturation at the highest concentration attainable. Zn does not alter the shape of the instantaneous current-voltage relation of open channels. Some other divalent cations have effects similar to Zn+2, Hg2+ being the most potent and Ca+2 the least. After treatment with Hg+2, which is irreversible, Zn+2 still slows opening kinetics, which suggests that each channel has at least two sites for divalent cation action. The results are not compatible with a simple theory of fixed, uniform surface charges. They suggest that external cations interact directly with a negatively charged element of the gating apparatus that moves inward from the membrane's outer surface during activation. Examination of normal kinetics shows that there is a slow step somewhere in the chain leading to channel opening. But the slowest step must not be the last one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号