首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Acetylene reduction activity (ARA) and leghemoglobin (Lb) content in nodules were sigificantly reduced when pea ( Pisum sativum L. cv. Lincoln) plants were subjected to 50 m M sodium chloride stress for 3 weeks. C2H2 reduction activity by bacteriods isolated from pea nodules was drastically inhibited by saline stress, and malate appeared to be a more appropriate substrate than glucose or succinate in maintaining this activity. Salt added directly to the incubation mixture of bacteriods or to the culture medium of plants inhibited O2 uptake by bacteroids. Nodule cytosolic phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) and bacteriod malate dehydrogenase (MDH; EC 1.1.1.37) activities were strongly enhanced by salt stress. Under these conditions, malate concentration was depressed in bacteroids and cytosol, whereas total soluble sugar (TSS)content slightly increased in both fractions. The effect of salt stress on TSS and malate content suggests that the utilization of carbohydrate within nodules could be inhibited during salt stress. The inhibitory effect of NaCl on N2 fixation activity of bacteroids and to the decrease in bacteroid respiration. The stimulation of fermentative metabolism induced by salinity suggests some reduction in O2 availability within the nodule. Salt stress was also responsible for a decrease of the cytosolic protein content, specifically of leghemoglobin, in the nodules.  相似文献   

2.
3.
Bacteroids retaining high acetylene reduction activity (nitrogenase activity) were prepared anaerobically from soybean nodules. Addition of succinate (or of both leghemoglobin and succinate) to the acetylene reduction assay system greatly increased the activity of the isolated bacteroids.

When various organic acids were incubated with the bacteroids at 2% oxygen concentration, an optimum condition for bacteroid acetylene reduction, the organic acid degradation by bacteroids was very slow, and both lactate and acetate were accumulated in the incubation system, suggesting the operation of fermentative pathway in bacteroids under such low oxygen conditions.

With 20% oxygen, the added organic acids were degraded rapidly by bacteroids without addition of leghemoglobin to the incubation system.

With leghemoglobin in the incubation system, the organic acid degradation by bacteroids was accelerated extensively even at 2% oxygen, and the formation of lactate and acetate were negligible. No significant difference in the organic acid degradation rate was observed between the 2% and 20% oxygen concentrations when the leghemoglobin was present in the incubation system. Addition of acetylene to the assay system slightly inhibited the organic acid degradation.

This data suggests that bacteroids are unable to oxidize organic acid in low oxygen concentration and that the leghemoglobin allows the rapid organic acid dagradation by bacteroids even in such low oxygen concentrations.  相似文献   

4.
Experiments were carried out to investigate if drought stressaffects the ability of bacteroids from soybean (Glycine maxL.) root nodules to utilize proline and malate to support nitrogenaseactivity. The bacteroids were isolated in sub-ambient oxygenand nitrogenase activity was measured by acetylene reduction.Nitrogenase activity supported by proline was 8-fold higherin bacteroids from drought-stressed nodules than in bacteroidsfrom control nodules. In contrast to the results with prolinethere was no significant response to drought stress in the rateof bacteroid nitrogenase activity supported by malate. The effectof drought stress on transport of proline and malate acrossthe symbiosome membrane was investigated by incubation of symbiosomesisolated in sub-ambient oxygen with radioactive tracers. Droughtstress tended to increase the rate of proline uptake relativeto a minor decrease in malate uptake into symbiosomes in responseto drought. There was no indication of a saturable camer inthe symbiosome membrane for either substrate at concentrationsin the range 0.1-2 mM. The rate of malate uptake into symbiosomeswas twice as high as the rate of proline uptake at all substratelevels tested. The protein composition of the symbiosome membranewas altered in response to drought stress and these changesmay relate .to the permeability of the symbiosome membrane. Key words: Drought stress, nitrogenase activity, proline, soybean nodules, symbiosome membrane, transport  相似文献   

5.
The effect of short-term nitrate application (10 mM, 0-4 d) on nitrogenase (N2ase) activity, antioxidant defenses, and related parameters was investigated in pea (Pisum sativum L. cv Frilene) nodules. The response of nodules to nitrate comprised two stages. In the first stage (0-2 d), there were major decreases in N2ase activity and N2ase-linked respiration and concomitant increases in carbon cost of N2ase and oxygen diffusion resistance of nodules. There was no apparent oxidative damage, and the decline in N2ase activity was, to a certain extent, reversible. The second stage (>2 d) was typical of a senescent, essentially irreversible process. It was characterized by moderate increases in oxidized proteins and catalytic Fe and by major decreases in antioxidant enzymes and metabolites. The restriction in oxygen supply to bacteroids may explain the initial decline in N2ase activity. The decrease in antioxidant protection is not involved in this process and is not specifically caused by nitrate, since it also occurs with drought stress. However, comparison of nitrate- and drought-induced senescence shows an important difference: there is no lipid degradation or lipid peroxide accumulation with nitrate, indicating that lipid peroxidation is not necessarily involved in nodule senescence.  相似文献   

6.
Several plant families generate polyols, the reduced form of monosaccharides, as one of their primary photosynthetic products. Together with sucrose (Suc) or raffinose, these polyols are used for long-distance allocation of photosynthetically fixed carbon in the phloem. Many species from these families accumulate these polyols under salt or drought stress, and the underlying regulation of polyol biosynthetic or oxidizing enzymes has been studied in detail. Here, we present results on the differential regulation of genes that encode transport proteins involved in phloem loading with sorbitol and Suc under salt stress. In the Suc- and sorbitol-translocating species Plantago major, the mRNA levels of the vascular sorbitol transporters PmPLT1 and PmPLT2 are rapidly up-regulated in response to salt treatment. In contrast, mRNA levels for the phloem Suc transporter PmSUC2 stay constant during the initial phase of salt treatment and are down-regulated after 24 h of salt stress. This adaptation in phloem loading is paralleled by a down-regulation of mRNA levels for a predicted sorbitol dehydrogenase (PmSDH1) in the entire leaf and of mRNA levels for a predicted Suc phosphate synthase (PmSPS1) in the vasculature. Analyses of Suc and sorbitol concentrations in leaves, in enriched vascular tissue, and in phloem exudates of detached leaves revealed an accumulation of sorbitol and, to a lesser extent, of Suc within the leaves of salt-stressed plants, a reduced rate of phloem sap exudation after NaCl treatment, and an increased sorbitol-to-Suc ratio within the phloem sap. Thus, the up-regulation of PmPLT1 and PmPLT2 expression upon salt stress results in a preferred loading of sorbitol into the phloem of P. major.  相似文献   

7.
Sucrose Synthase in Legume Nodules Is Essential for Nitrogen Fixation   总被引:18,自引:5,他引:13       下载免费PDF全文
The role of sucrose synthase (SS) in the fixation of N was examined in the rug4 mutant of pea (Pisum sativum L.) plants in which SS activity was severely reduced. When dependent on nodules for their N supply, the mutant plants were not viable and appeared to be incapable of effective N fixation, although nodule formation was essentially normal. In fact, N and C resources invested in nodules were much greater in mutant plants than in the wild-type (WT) plants. Low SS activity in nodules (present at only 10% of WT levels) resulted in lower amounts of total soluble protein and leghemoglobin and lower activities of several enzymes compared with WT nodules. Alkaline invertase activity was not increased to compensate for reduced SS activity. Leghemoglobin was present at less than 20% of WT values, so O2 flux may have been compromised. The two components of nitrogenase were present at normal levels in mutant nodules. However, only a trace of nitrogenase activity was detected in intact plants and none was found in isolated bacteroids. The results are discussed in relation to the role of SS in the provision of C substrates for N fixation and in the development of functional nodules.  相似文献   

8.
Within their natural habitat plants are subjected to a combination of different abiotic stresses, each with the potential to exacerbate the damage caused by the others. One of the most devastating stress combinations for crop productivity, which frequently occurs in the field, is drought and heat stress. In this study we conducted proteomic and metabolic analysis of Arabidopsis thaliana plants subjected to a combination of drought and heat stress. We identified 45 different proteins that specifically accumulated in Arabidopsis in response to the stress combination. These included enzymes involved in reactive oxygen detoxification, malate metabolism, and the Calvin cycle. The accumulation of malic enzyme during the combined stress corresponded with enhanced malic enzyme activity, a decrease in malic acid, and lower amounts of oxaloacetate, suggesting that malate metabolism plays an important role in the response of Arabidopsis to the stress combination. Cytosolic ascorbate peroxidase 1 (APX1) protein and mRNA accumulated during the stress combination. When exposed to heat stress combined with drought, an APX1-deficient mutant (apx1) accumulated more hydrogen peroxide and was significantly more sensitive to the stress combination than wild type. In contrast, mutants deficient in thylakoid or stromal/mitochondrial APXs were not more sensitive to the stress combination than apx1 or wild type. Our findings suggest that cytosolic APX1 plays a key role in the acclimation of plants to a combination of drought and heat stress.  相似文献   

9.
We examined the effect of drought stress on proline accumulation,nitrogenase activity and activities of enzymes related to prolinemetabolism in soybean (Glycine max [L.] Merr.) nodules. Nitrogenase(C2H2 reducing) activity was inhibited 90% or more as a resultof drought stress. This inhibition was substantially reversedafter a 4 h recovery period. Pyrroline-5-carboxylate reductaseactivity in extracts of drought-stressed nodules from 25-d-oldplants was 55% higher than in unstressed nodules, but the sameactivity in preparations from 55-d-old plants was similar tothat of control plants. Extracts of recovering nodules on plantsof both ages had activities near those of controls. Droughtstress increased the activity of the pentose phosphate pathwayby about 65% in extracts of nodules from 55-d-old plants, butthere was no effect in extracts of nodules from younger plants(25-d-old). Proline dehydrogenase activity was 3.7 and 1.6 timeshigher in bacteroids isolated from nodules taken from 25- and55-d-old stressed plants, respectively, than in comparable controlbacteroids. This activity remained high in bacteroids from bothsets of recovering nodules. The amount of proline in extractsfrom stressed nodules was 3- to 4-fold higher than in unstressednodules, despite increased proline dehydrogenase activity andremained high in nodules collected 4 h after rewatering. Thisincrease was observed in both cytoplasmic and bacteroid fractions.The possible physiological significance of these results isdiscussed. Key words: Proline metabolism, pentose phosphate pathway, drought stress, soybean nodules  相似文献   

10.
When the roots of Vicia faba L. beans were subjected to hypoxic stress, the activity of H+-ATPase on the peribacteroid membrane, as well as the transport of dicarboxylates (malate and succinate) mediated by this enzyme, decreased. Since malate and succinate are the main carbon-containing metabolites involved in the energy supply to bacteroids, this caused a change of the relation type from mutualism to commensalism, and the domination of the eukaryotes over the prokaryotes consequently increased.  相似文献   

11.
Common beans (Phaseolus vulgaris L.) were exposed to continuous darkness to induce nodule senescence, and several nodule parameters were investigated to identify factors that may be involved in the initial loss of N2 fixation. After only 1 d of darkness, total root respiration decreased by 76% and in vivo nitrogenase (N2ase) activity decreased by 95%. This decline coincided with the almost complete depletion (97%) of sucrose and fructose in nodules. At this stage, the O2 concentration in the infected zone increased to 1%, which may be sufficient to inactivate N2ase; however, key enzymes of carbon and nitrogen metabolism were still active. After 2 d of dark stress there was a significant decrease in the level of N2ase proteins and in the activities of enzymes involved in carbon and nitrogen assimilation. However, the general collapse of nodule metabolism occurred only after 4 d of stress, with a large decline in leghemoglobin and antioxidants. At this final senescent stage, there was an accumulation of oxidatively modified proteins. This oxidative stress may have originated from the decrease in antioxidant defenses and from the Fe-catalyzed generation of activated oxygen due to the increased availability of catalytic Fe and O2 in the infected region.  相似文献   

12.
Balestrasse  K.B.  Gallego  S.M.  Tomaro  M.L. 《Plant and Soil》2004,262(1-2):373-381
The relationship between cadmium-induced oxidative stress and nodule senescence in soybean was investigated at two different concentrations of cadmium ions (50 and 200 μM), in solution culture. High cadmium concentration (200 μM) resulted in oxidative stress, which was indicated by an increase in thiobarbituric acid reactive substances content and a decrease in leghemoglobin levels. Consequently, nitrogenase activity was decreased, and increases in iron and ferritin levels were obtained. Senescent parameters such as ethylene production, increased levels of ammonium and an increase in protease activity were simultaneously observed. Glutamate dehydrogenase activity was also increased. Peroxidase activity decreased at the higher cadmium concentration while the lower cadmium treatment produced changes in peroxidase isoforms, compared to control nodules. Ultrastructural investigation of the nodules showed alterations with a reduction of both bacteroids number per symbiosome and the effective area for N2-fixation. These results strongly suggest that, at least at the higher concentration, cadmium induces nodule senescence in soybean plants.  相似文献   

13.
Young (16-day-old) Sorghum bicolor plants of a late- and slow-senescing Texas A&M line (B 35) and of an early- and fast-senescing descendant of an Ethiopian landrace (E 36-1) were subjected to drought stress by decreasing the soil water content to 30% field capacity over 6 days. Plant water potentials decreased from − 2 bar (controls) to − 10 to − 18 bar, and this drought stress resulted in: (1) differential phenotypic reactions and (2) differential decreases in photosynthesis rates in the two cultivars. While E 36-1 tended to lose viable leaf area from the leaf tips downwards, B 35 showed a gradual overall drying of the leaf. At the same time, photosynthesis rates decreased from 31.5 ± 1.6 to 12.3 ± 5.0 µmol CO2 m−2 s−1 (E 36-1) and from 30.5 ± 1.6 to 3.3 ± 2.6 µmol CO2 m−2 s−1 (B 35), respectively. In vitro enzyme activities of phosphoenolpyruvate carboxylase (PEPCase), malate dehydrogenase (MDH) and malic enzyme (ME) on a leaf area basis exceeded the photosynthesis rates. Pyruvate phosphate dikinase (PPDK) activity was close to the photosynthesis rates in control plants and higher than the photosynthesis rates in drought-stressed plants. Thus, none of the enzymes appeared to limit photosynthesis under drought stress, and likely bottleneck enzyme activities of the C3 pathway in the bundle-sheath cells, i.e. ribulose-1,5-bisphosphate carboxylase (RubisCO) and stromal fructose-1,5-bisphosphatase (sFBPase), also showed sufficient activities to sustain higher photosynthesis rates than those observed in the stressed plants. However, under drought stress, total leaf malate concentrations were higher in B 35 (up to 33.1 µmol g−1 FW) than in E 36-1 (up to 22.4 µmol g−1 FW). In particular, at the presumed cytosolic pH of 7.0–7.3, S. bicolor PEPCase was strongly inhibited by malate. In contrast with the in vitro PEPCase enzyme activities, the A/Ci curves suggested a stronger decrease in the in vivo activity of the enzyme in B 35 under drought stress than in E 36-1. It is therefore suggested that photosynthesis under drought stress may be inhibited differentially through feedback malate inhibition of PEPCase in S. bicolor.  相似文献   

14.
The aim of this study is to evaluate the contribution of bacteroidproline catabolism as an adaptation to drought stress in soybeanplants. To accomplish this, soybeans (Glycine max L. Merr.)were inoculated with either a parental strain of Bradyrhizobiumjaponicum which was able to catabolize proline, or a mutantstrain unable to catabolize proline. A large strain-dependentdifference in nodule number and size was observed. In orderto separate inoculant-dependent effects on nodulation from effectson bacteroid proline catabolism, plants inoculated with eachstrain were only compared to other plants inoculated with thesame strain, thus removing the observed inoculant-dependentdifferences in nodulation as a bar to interpretation of theresults. This experimental design allowed a comparison of thedrought penalty on yield for plants with parental bacteroidsand for plants with mutant bacteroids. The two results werethen compared to each other in order to evaluate the impactof the ability of bacteroids to catabolize proline on the responseto drought stress. When water stress was mild, soybean plants inoculated with bacteriaunable to catabolize proline suffered twice the percentage decreasein seed yield as did plants inoculated with bacteria able tocatabolize proline. However, when stress was severe there wasno significant effect of the ability of bacteroids to catabolizeproline on drought imposed decrease in seed yield. These resultssuggest that increasing the oxidative flux of proline in bacteroidsmight provide an agronomically significant yield advantage whenstress is modest, but that severe drought stress would probablyoverwhelm this yield benefit. Key words: N2-fixation, proline dehydrogenase, drought stress  相似文献   

15.
Two cDNAs of the enzyme glutathione reductase (GR; EC 1.6.4.2) encoding a dual-targeted isoform (dtGR) and a cytosolic isoform (cGR), were cloned from leaves of common bean (Phaseolus vulgaris L.). Moderate drought stress (Psi w=-1.5MPa) followed by re-watering was applied to common bean cultivars, one tolerant to drought (IPA), the other susceptible (Carioca) and to cowpea (Vigna unguiculata L. Walp) cultivars, one tolerant to drought (EPACE-1), and the other susceptible (1183). mRNA levels were much higher for PvcGR than for PvdtGR in all cases. Moderate drought stress induced an up-regulation of the expression of PvcGR in the susceptible cultivars. On the contrary, PvdtGR expression decreased. In the tolerant cowpea EPACE-1, GR gene expression remained stable under drought. During recovery from drought, an up-regulation of the two GR isoforms occurred, with a peak at 6-10h after re-hydration. This suggests that moderate drought stress may lead to a hardening process and acclimation tolerance. The role of GR isoforms in plant tolerance and capacity to recover from drought stress is discussed.  相似文献   

16.
Ru  Chen  Wang  Kaifei  Hu  Xiaotao  Chen  Dianyu  Wang  Wene  Yang  Haosheng 《Journal of Plant Growth Regulation》2023,42(3):1681-1703

Longer and more intense heat and drought stresses will occur in terrestrial ecosystems in the future. Although the effects of individual heat or drought stress on wheat plants have been largely explored, the regulatory effect of nitrogen (N) on winter wheat under heat, drought, and combined stresses and whether N alleviates damage to wheat plants caused by these stresses remain unclear. Therefore, the objective of the present study was to investigate the growth, photosynthesis, antioxidant enzyme and N metabolism-related enzyme activity, cell membrane system, osmoregulatory substance, and yield responses to heat, drought, and combined stresses in wheat plants and to clarify the regulatory effects of N on the growth, physiological and biochemical characteristics, and yield of wheat plants under stress conditions. The results showed that wheat plant exposure to individual heat or drought stress reduced photosynthesis and N metabolism-related enzyme activities and increased antioxidant enzyme activities, electrolyte leakage (EL), and the contents of MDA (malondialdehyde) and O2? (superoxide anion). The above parameters showed typical superposition effects under combined stress. Under individual heat or drought stress, wheat plants treated with a medium (N2) or high (N3) N supply maintained higher photosynthesis and N metabolism-related enzyme activities than did those treated with a low N supply (N1). Enhanced heat and drought tolerance in wheat plants under an appropriate N supply may be attributed to improved antioxidant capacity, as exemplified by increased activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR) and ascorbate peroxidase (APX), and to enhanced osmoregulation capacity, as signified by increased contents of soluble sugar (SS), soluble protein (SP), and proline (Pro). Variable importance in projection (VIP) analysis indicated that efficient SOD, POD, CAT, and GR activities and an increased Pro content had superior potential to alleviate heat, drought, and combined stress stresses in wheat plants, and the improvements in growth and grain yield in wheat plants further confirmed the oxidative stress alleviation and stress tolerance enhancement. However, positive effects of N on wheat growth and grain yield under combined stress were usually observed under a low N supply. These results may facilitate future research on the effects of N fertilizer on the stress resistance of winter wheat.

Graphical Abstract
  相似文献   

17.
The effect of drought upon phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31), malate ddiydrogenase (MDH; EC 1.1.1.37), alcohol dehydrogenase (ADH; EC 1.1.1.1) and β -hydroxybulyrate dehydrogenase ( β -OH-BDH; EC 1.1.1.30) enzyme activities as well as the leghemoglobin (Lb), malate and ethanol contents of alfalfa nodules ( Medicago sativa L. cv. Aragon) were examined. Both the ieghemoglobin (Lb) content and the Lb/soluble protein ratio were significantly reduced at a nodule water potential (Ψnod) of—1.3 MPa. At lower Ψnod, Lb content decreased further, but the ratio remained unchanged. Slight stress (—1.3 MPa) drastically affected acetylene reduction activity (ARA; 60% reduction) whereas in vitro PEPC activity was main-tained at relatively constant values. As stress progressed (—2.0 MPa), a simultaneous reduction in both activities was observed. Severe stress (Ψnod lower than —2.0 MPa) stimulated in vitro PEPC. Bacteroid β -J-OH-BDH activity was stimulated by slight (—1.3 MPa) and moderate (—2.0 MPa) drought. MDH activity rose in slightly stressed nodules (Ψnod—1.3 MPa). Greater water deficits sharply decreased MDH activity to values significantly lower than those found in control nodules. Nodule malate content followed the same pattern as MDH. The plant fraction of the nodule showed constitutive ADH activity and contained ethanol. ADH was stimulated at slight (— 1.3 MPa) and moderate drought levels (—2.0 MPa). Ethanol content showed similar behavior to ADH activity. Inhibition of ARA, reduction of Lb content and stimulation of the fermentative metabolism induced by water stress suggest some reduction ira O2 availability within the nodule.  相似文献   

18.
Pyruvate kinase (PK, EC 2.7.1.40) was partially purified from the plant cytosolic fraction of N2-fixing soybean ( Glycine max [L.] Merr.) root nodules. The partially purified PK preparation was completely free of contamination by phospho enol pyruvate carboxylase (PEPC, EC 4.1.1.31), the other major phospho enol pyruvate (PEP)-utilizing enzyme in legume root nodules. Latency experiments with sonicated nodule extracts showed that Bradyrhizobium japonicum bacteroids do not express either PK or PEPC activity in symbiosis. In contrast, free-living B. japonicum bacteria expressed PK activity, but not PEPC activity. Antibodies specific for the cytosolic isoform of PK from castor bean endosperm cross-reacted with a 52-kDa polypeptide in the partially purified PK preparation. At the optimal assay pH (pH 8.0 for PEPC and pH 6.9 for PK) and in the absence of malate, PEPC activity in crude nodule extracts was 2.6 times the corresponding PK activity. This would tend to favour PEP metabolism by PEPC over PEP metabolism by PK. However, at pH 7.0 in the presence of 5 m M malate, PEPC activity was strongly inhibited, but PK activity was unaffected. Thus, we propose that PK and PEPC activity in legume root nodules may be coordinately regulated by fluctuations in malate concentration in the plant cytosolic fraction of the bacteroid-containing cells. Reduced uptake of malate by the bacteroids, as a result of reduced rates of N2 fixation, may favour PEP metabolism by PK over PEP metabolism by PEPC.  相似文献   

19.
20.
In the halophytic plant Mesembryanthemum crystallinum salinity or drought can change the mode of photosynthesis from C3 to crassulacean acid metabolism (CAM). These two stress factors are linked to oxidative stress, however, the induction of CAM by oxidative stress per se is not straightforward. Treatment with high light (HL) did not lead to the induction of CAM, as documented by a low night/day difference in malate level and a low expression of the CAM-related form of phosphoenolcarboxylase (Ppc1), despite causing some oxidative damage (elevated MDA level, malondialdehyde). In contrast to the action of high salinity (0.4 M NaCl), HL treatment did not activate neither the cytosolic NADP-malic enzyme nor the chloroplastic form of NADP-dependent malate dehydrogenase (NADP-MDH). In plastids of HL-treated plants a huge amount of starch was accumulated. This was associated with a weak stimulation of hydrolytic and phosphorolytic starch-degrading enzymes, in contrast to their strong up-regulation under high salinity. It is concluded that HL alone is not able to activate starch degradation necessary for CAM performance. Moreover, in the absence of salinity in C3M. crystallinum plants an age-dependent increase in energy dissipation from PSII was documented under high irradiance, as illustrated by non-photochemical quenching (NPQ). Obtained data suggest that in this halophytic species several photoprotective strategies are strictly salinity-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号