首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Purple bacteria control the level of expression and the composition of their photosystem according to light and redox conditions. This control involves several regulatory systems that have been now well characterized. Among them, the PpsR regulator plays a central role, because it directly or indirectly controls the synthesis of all of the different components of the photosystem. In this review, we report our knowledge of the PpsR protein, highlighting the diversity of its mode of action and focusing on the proteins identified in four model purple bacteria (Rhodobacter capsulatus, Rhodobacter sphaeroides, Rubrivivax gelatinosus, Bradyrhizobium ORS278). This regulator exhibits unique regulatory features in each bacterium: it can activate and/or repress the expression of photosynthesis genes, its activity can be modulated or not by the redox conditions, it can interact with other specific regulators and therefore be involved differently in light and/or redox regulatory circuits.  相似文献   

4.
5.
6.
7.
Heme-mediated regulation, presented in many biological processes, is achieved in part with proteins containing heme regulatory motif. In this study, we demonstrate that FLAG-tagged PpsR isolated from Rhodobacter sphaeroides cells contains bound heme. In vitro heme binding studies with tagless apo-PpsR show that PpsR binds heme at a near one-to-one ratio with a micromolar binding constant. Mutational and spectral assays suggest that both the second Per-Arnt-Sim (PAS) and DNA binding domains of PpsR are involved in the heme binding. Furthermore, we show that heme changes the DNA binding patterns of PpsR and induces different responses of photosystem genes expression. Thus, PpsR functions as both a redox and heme sensor to coordinate the amount of heme, bacteriochlorophyll, and photosystem apoprotein synthesis thereby providing fine tune control to avoid excess free tetrapyrrole accumulation.  相似文献   

8.
Aerobic photosynthetic bacteria possess the unusual characteristic of producing different classes of carotenoids. In this study, we demonstrate the presence of two distinct crt gene clusters involved in the synthesis of spirilloxanthin and canthaxanthin in a Bradyrhizobium strain. Each cluster contains the genes crtE, crtB, and crtI leading to the common precursor lycopene. We show that spirilloxanthin is associated with the photosynthetic complexes, while canthaxanthin protects the bacteria from oxidative stress. Only the spirilloxanthin crt genes are regulated by light via the control of a bacteriophytochrome. Despite this difference in regulation, the biosyntheses of both carotenoids are strongly interconnected at the level of the common precursors. Phylogenetic analysis suggests that the canthaxanthin crt gene cluster has been acquired by a lateral gene transfer. This acquisition may constitute a major selective advantage for this class of bacteria, which photosynthesize only under conditions where harmful reactive oxygen species are generated.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
Bacteriophytochromes are phytochrome-like proteins that mediate photosensory responses in various bacteria according to their light environment. The genome of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain ORS278 revealed the presence of a genomic island acquired by lateral transfer harboring a bacteriophytochrome gene, BrBphP3.ORS278, and genes involved in the synthesis of phycocyanobilin and gas vesicles. The corresponding protein BrBphP3.ORS278 is phylogenetically distant from the other (bacterio)phytochromes described thus far and displays a series of unusual properties. It binds phycocyanobilin as a chromophore, a unique feature for a bacteriophytochrome. Moreover, its C-terminal region is short and displays no homology with any known functional domain. Its dark-adapted state absorbs maximally around 610 nm, an unusually short wavelength for (bacterio)phytochromes. This form is designated as Po for orange-absorbing form. Upon illumination, a photo-reversible switch occurs between the Po form and a red (670 nm)-absorbing form (Pr), which rapidly backreacts in the dark. Because of this instability, illumination results in a mixture of the Po and Pr states in proportions that depend on the intensity. These uncommon features suggest that BrBphP3.ORS278 could be fitted to measure light intensity rather than color.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号