首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
 For the angiosperm dominants of northern California’s mixed evergreen forests, this study compares the display of photosynthetic tissue within leaves and along branches, and examines the correspondence between these morphological attributes and the known environmental tolerances of these species. Measurements were made on both sun and shade saplings of six species: Arbutus m e n z i e s i i (Ericaceae), C h r y s o l e p i s c h r y s o p h y l l a (Fagaceae), L i t h o c a r p u s d e n s i f l o r u s (Fagaceae), Quercus c h r y s o l e p i s (Fagaceae), Quercus w i s l i z e n i i (Fagaceae), and Umbellularia c a l i f o r n i c a (Lauraceae). All species had sclerophyllous leaves with thick epidermal walls, but species differed in leaf specific weight, thickness of mesophyll tissues and in the presence of a hypodermis, crystals, secretory idioblasts, epicuticular deposits, and trichomes. The leaves of Arbutus were 2 – 5 times larger than those of C h r y s o l e p i s, L i t h o c a r p u s and Umbellularia and 4 – 10 times larger than those of both Quercus species. Together with differences in branch architecture, these leaf traits divide the species into groups corresponding to environmental tolerances. Shade-tolerant C h r y s o l e p i s, L i t h o c a r p u s, and Umbellularia had longer leaf lifespans and less palisade tissue, leaf area, and crown mass per volume than the intermediate to intolerant Arbutus and Quercus. Having smaller leaves, Quercus branches had more branch mass per leaf area and per palisade volume than other species, whereas Arbutus had less than other species. These differences in display of photosynthetic tissue should contribute to greater growth for Quercus relative to the other species under high light and limited water, for Arbutus under high light and water availability, and for C h r y s o l e p i s, L i t h o c a r p u s, and Umbellularia under limiting light levels. Accepted: 22 March 1996  相似文献   

3.
A taxonomic review of the Korean Lymantria Hübner, 1819 was conducted. A total of nine species of five subgenera with two unrecorded species are listed: Lymantria (Porthetria) dispar Linnaeus 1758, L. (P.) xylina Swinhoe 1903, L. (Lymantria) monacha (Linnaeus 1758), L. (L.) minomonis Matsumura 1933 (new to Korea), L. (L.) similis monachoides Schintlimeister 2004 (new to Korea), L. (L.) lucescens (Butler 1881), L. (Nyctria) mathura Moore 1865, L. (Collentria) fumida Butler 1877, and L. (Spinotria) bantaizana Matsumura 1933. Lymantria (Lymantria) minomonis and L. (L.) similis monachoides are newly added to the Korean fauna. Lymantria (L.) minomonis was found only on Bogildo Island of Jeollanam‐do in the southern part of Korea, and L. (L.) similis monachoides was collected in central Korea. Lymantria (Porthetria) xylina and L. (Collentria) fumida were not examined in this study, and it is considered that the previous records were due to misidentification or they are only distributed in the northern part of the Korean Peninsula. We provide diagnoses of two unrecorded species and adult habitus and genitalia photos of the Korean Lymantria species.  相似文献   

4.
Communal Areas Management Programme for Indigenous Resources (CAMPFIRE) is a long-term programmatic approach to rural development that uses wildlife and other natural resources as a mechanism for promoting devolved rural institutions and improved governance and livelihoods. The cornerstone of CAMPFIRE is the right to manage, use, dispose of, and benefit from these resources. Between 1989 and 2006, CAMPFIRE income, mostly from high valued safari hunting, totalled nearly USD 30 million, of which 52 allocated to sub-district wards and villages for community projects and household benefits. Whilst a number of assumptions underlying the success of CAMPFIRE as an innovative model for CBNRM have yet to be met, CAMPFIRE confirms the concept that devolving responsibility and accountability for natural resource management can be highly effective for the collective and participatory management of such resources. Elephant numbers in CAMPFIRE areas have increased and buffalo numbers are either stable or decreased slightly during the life of the programme. However, offtake quotas for these two species have increased with a concomitant decline in trophy quality. Although the amount of wildlife habitat diminished after 1980, following the commencement of CAMPFIRE the rate of habitat loss slowed down and in some specific instances was even reversed. More recently there has been increased pressure on habitats and other natural resources as a consequence of deterioraa  30 million, of which 52% was allocated to sub-district wards and villages for community projects and household benefits. Whilst a number of assumptions underlying the success of CAMPFIRE as an innovative model for CBNRM have yet to be met, CAMPFIRE confirms the concept that devolving responsibility and accountability for natural resource management can be highly effective for the collective and participatory management of such resources. Elephant numbers in CAMPFIRE areas have increased and buffalo numbers are either stable or decreased slightly during the life of the programme. However, offtake quotas for these two species have increased with a concomitant decline in trophy quality. Although the amount of wildlife habitat diminished after 1980, following the commencement of CAMPFIRE the rate of habitat loss slowed down and in some specific instances was even reversed. More recently there has been increased pressure on habitats and other natural resources as a consequence of deteriorating socio-economic conditions in the country. Where devolution has been successful, promising results have been achieved and the recent acceptance and implementation of direct payments to communities is probably the most significant development since 2000. That this has happened can be attributed to CAMPFIRE enabling communities to maximize their roles within the existing set of rules, and by so doing, allowing these rules to be challenged. Donor (73%) and government (27%) investments into the programme amounted to 35 million during the period 1989 to 2003. Since 2003 however, donor funding has been reduced to <$600,000 over the past 5 years.  相似文献   

5.
Food attraction of the fungivorous nematodes Aphelenchus avenae and Aphelenchoides spp. to seven fungal species (Pyrenochaeta lycopersici, Botrytis cinerea, Rhizoctonia solani strains AG 3 and AG 2‐1, Verticillium dahliae, Pochonia bulbillosa, Mortierella hyalina and Trichoderma harzianum) was determined on agar plates by counting the number of test nematodes present on the mycelium of each fungus 24 h after inoculation. Population growth of A. avenae and Aphelenchoides spp. on five of the seven fungi included in the attraction test (P. lycopersici, R. solani strain AG 3, V. dahliae, P. bulbillosa and T. harzianum) was also determined on agar plates by counting nematode numbers every week during a 6‐week period. A. avenae and Aphelenchoides spp. were attracted to all the fungi tested. A. avenae was preferentially attracted to V. dahliae (P < 0.0001), and Aphelenchoides spp. did not show any preference except for low attraction to R. solani. A. avenae and Aphelenchoides spp. reproduced on all fungal species tested. After 6 weeks of incubation, the highest number of nematodes was found on P. lycopersici and P. bulbillosa, while the lowest number occurred on R. solani for A. avenae and on T. harzianum for Aphelenchoides spp. The suitability of a fungus as a host was not clearly related to the attraction to that fungus.  相似文献   

6.
Six clades are inferred from a phylogenetic analysis including 42 species belonging to the Empis (Coptophlebia) hyalea‐group. These clades are named as follows: E. (C.) acris, E. (C.) aspina, E. (C.) atratata, E. (C.) hyalea, E. (C.) jacobsoni and E. (C.) nahaeoensis. The presence of two dorsal more or less developed epandrial projections is considered autapomorphic for the E. (C.) hyalea‐group in addition to two characters previously found to support the monophyly of this group (presence of an unsclerotized zone in the middle of labella and epandrium unpaired). Amongst the cladistically analysed species, 24 are newly described [ E. ( C. ) acris , E. ( C. ) aspina , E. ( C. ) cameronensis , E. ( C. ) duplex , E. ( C. ) incurva , E. ( C. ) inferiseta , E. ( C. ) kuaensis , E. ( C. ) lachaisei , E. ( C. ) lamellalta , E. ( C. ) lata , E. ( C. ) loici , E. ( C. ) longiseta , E. ( C. ) mengyangensis , E. ( C. ) menglunensis , E. ( C. ) missai , E. ( C. ) nimbaensis , E. ( C. ) padangensis , E. ( C. ) parvula , E. ( C. ) projecta , E. ( C. ) pseudonahaeoensis , E. ( C. ) submetallica , E. ( C. ) urumae , E. ( C. ) vitisalutatoris and E. ( C. ) woitapensis ], five are reviewed [E. (C.) hyalea Melander, E. (C.) jacobsoni De Meijere, E. (C.) ostentator Melander, E. (C.) sinensis Melander and E. (C.) thiasotes Melander] and 13 were recently described in two previous papers. Two additional species, E. (C.) abbrevinervis De Meijere and E. (C.) multipennata Melander, are also reviewed but not included in the cladistic analysis since they are only known from the female. A lectotype is designated for E. (C.) jacobsoni. A key is provided to the six clades of the E. (C.) hyalea‐group as well as to species of each clade. A catalogue of the E. (C.) hyalea‐group, including 72 species, is given. The taxonomic status of 25 additional species mainly described by Bezzi and Brunetti, from the Oriental and Australasian regions, is discussed. The E. (C.) hyalea‐group is firstly recorded from the Palaearctic Region and Australia. Finally, the distribution and the habitats of the species compared with their phylogeny suggest a possible relationship between the diversification of the group and forest fragmentations during the Quaternary. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 339–391.  相似文献   

7.
The antifungal activities of volatile phase effects of essential oils from Origanum onites, O. syriacum, O. minutiflorum, O. vulgare, O, marjorana, Thymus vulgaris, T. serpyllum, Rosmarinus officinalis, Salvia officinalis and Micromeria fruticosa were evaluated for their ability to inhibit growth of three vegetative compatibility groups (VCGs) of Verticillium dahliae. Carvacrol was the main component of O. onites, O. minutiflorum and O. vulgare essential oils, while γ-terpinene was the main component of O. syriacum. P-cymene and thymol were the dominant component of T. vulgaris and T. serpyllum. β- thujone and l-camphor were the main component of S. officinalis. Polegone and isomenthone were the dominant components of M. fruticosa essential oil. Based on the in vitro test, the degree of fungistatical effects can be ranked in the following order of inhibition: O. syriacum = O. onites = O. minutiflorum = O. vulgare = T. vulgaris > T. serpyllum > M. fruticosa > S. officinalis = O. marjorana > R. officinalis. The essential oils of S. officinalis, O. marjorana and R. officinalis displayed moderate antifungal activity, that increased with increasing concentrations. Among the VCGs, VCG2A and VCG4B were found to be highly sensitive to the essential oils. The essential oils of O. syriacum, O. onites, O. minutiflorum, O. vulgare and T. vulgaris were the most efficacious, demonstrating strong antifungal activity against all of the tested VCGs of V. dahliae at relatively low concentrations and they could find practical application as natural fungicides in the prevention and protection of plants from V. dahliae infections.  相似文献   

8.
Higher‐level relationships within Aedini, the largest tribe of Culicidae, are explored using morphological characters of eggs, fourth‐instar larvae, pupae, and adult females and males. In total, 172 characters were examined for 119 exemplar species representing the existing 12 genera and 56 subgenera recognized within the tribe. The data for immature and adult stages were analysed separately and in combination using equal (EW) and implied weighting (IW). Since the classification of Aedini is based mainly on adult morphology, we first tested whether adult data alone would support the existing classification. Overall, the results of these analyses did not reflect the generic classification of the tribe. The tribe as a whole was portrayed as a polyphyletic assemblage of Aedes and Ochlerotatus within which eight (EW) or seven (IW) other genera were embedded. Strict consensus trees (SCTs) derived from analyses of the immature stages data were almost completely unresolved. Combining the adult and immature stages data resulted in fewer most parsimonious cladograms (MPCs) and a more resolved SCT than was found when either of the two data subsets was analysed separately. However, the recovered relationships were still unsatisfactory. Except for the additional recovery of Armigeres as a monophyletic genus, the groups recovered in the EW analysis of the combined data were those found in the EW analysis of adult data. The IW analysis of the total data yielded eight MPCs consisting of three sets of two mutually exclusive topologies that occurred in all possible combinations. We carefully studied the different hypotheses of character transformation responsible for each of the alternative patterns of relationship but were unable to select one of the eight MPCs as a preferred cladogram. Overall, the relationships within the SCT of the eight MPCs were a significant improvement over those found by equal weighting. Aedini and all existing genera except Ochlerotatus and Aedes were recovered as monophyletic. Ochlerotatus formed a polyphyletic assemblage basal to Aedes. This group included Haemagogus and Psorophora, and also Opifex in a sister‐group relationship with Oc. (Not.) chathamicus. Aedes was polyphyletic relative to seven other genera, Armigeres, Ayurakitia, Eretmapodites, Heizmannia, Udaya, Verrallina and Zeugnomyia. With the exception of Ae. (Aedimorphus), Oc. (Finlaya), Oc. (Ochlerotatus) and Oc. (Protomacleaya), all subgenera with two or more species included in the analysis were recovered as monophyletic. Rather than leave the generic classification of Aedini in its current chaotic state, we decided a reasonable and conservative compromise classification would be to recognize as genera those groups that are ‘weighting independent’, i.e. those that are common to the results of both the EW and IW analyses of the total data. The SCT of these combined analyses resulted in a topology of 29 clades, each comprising between two and nine taxa, and 30 taxa (including Mansonia) in an unresolved basal polytomy. In addition to ten genera (Armigeres, Ayurakitia, Eretmapodites, Haemagogus, Heizmannia, Opifex, Psorophora, Udaya, Verrallina and Zeugnomyia), generic status is proposed for the following: (i) 32 existing subgenera of Aedes and Ochlerotatus, including nine monobasic subgenera within the basal polytomy, i.e. Ae. (Belkinius), Ae. (Fredwardsius), Ae. (Indusius), Ae. (Isoaedes), Ae. (Leptosomatomyia), Oc. (Abraedes), Oc. (Aztecaedes), Oc. (Gymnometopa) and Oc. (Kompia); (ii) three small subgenera within the basal polytomy that are undoubtedly monophyletic, i.e. Ae. (Huaedes), Ae. (Skusea) and Oc. (Levua), and (iii) another 20 subgenera that fall within the resolved part of the SCT, i.e. Ae. (Aedes), Ae. (Alanstonea), Ae. (Albuginosus), Ae. (Bothaella), Ae. (Christophersiomyia), Ae. (Diceromyia), Ae. (Edwardsaedes), Ae. (Lorrainea), Ae. (Neomelaniconion), Ae. (Paraedes), Ae. (Pseudarmigeres), Ae. (Scutomyia), Ae. (Stegomyia), Oc. (Geoskusea), Oc. (Halaedes), Oc. (Howardina), Oc. (Kenknightia), Oc. (Mucidus), Oc. (Rhinoskusea) and Oc. (Zavortinkius). A clade consisting of Oc. (Fin.) kochi, Oc. (Fin.) poicilius and relatives is raised to generic rank as Finlaya, and Downsiomyia Vargas is reinstated from synonymy with Finlaya as the generic name for the clade comprising Oc. (Fin.) leonis, Oc. (Fin.) niveus and their relatives. Three other species of Finlaya?Oc. (Fin.) chrysolineatus, Oc. (Fin.) geniculatus and Oc. (Fin.) macfarlanei? fall within the basal polytomy and are treated as Oc. (Finlaya) incertae sedis. Ochlerotatus (Ochlerotatus) is divided into three lineages, two of which, Oc. (Och.) atropalpus and Oc. (Och.) muelleri, are part of the basal polytomy. The remaining seven taxa of Oc. (Ochlerotatus) analysed, including the type species, form a reasonably well‐supported group that is regarded as Ochlerotatus s.s. Ochlerotatus (Rusticoidus) is retained as a subgenus within Ochlerotatus s.s. Ochlerotatus (Nothoskusea) is recognized as a subgenus of Opifex based on two unique features that support their sister‐group relationship. A new genus, Tanakaius gen. nov. , is proposed for Oc. (Fin.) togoi and the related species Oc. (Fin.) savoryi. The taxonomic status and generic placement of all currently valid species of Aedini are listed in an appendix. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142 , 289?368.  相似文献   

9.
10.
The predominantly Holarctic bee genus Osmia Panzer is species‐rich and behaviourally diverse. A robust phylogeny of this genus is important for understanding the evolution of the immense variety of morphological and behavioural traits exhibited by this group. We infer a phylogeny of Osmia using DNA sequence data obtained from three nuclear genes (elongation factor 1‐α, LWrhodopsin and CAD) and the mitochondrial gene COI. Our taxon sampling places special attention on North American members of the subgenus Melanosmia Schmiedeknecht; we discuss the novel placement of a number of species traditionally assigned to O. (Melanosmia) and examine the relative support for alternative classifications of this species‐rich subgenus. We use this new phylogeny to guide a reassessment of morphological and behavioural characters within Osmia. Our results provide support for the recognition of Osmia (Hapsidosmia), subgen.n ., a monotypic subgenus containing Osmia iridis Cockerell & Titus. We synonymize Osmia (Mystacosmia) Snelling under O. (Melanosmia), syn.n . We synonymize Osmia (Acanthosmioides) Ashmead under O. (Melanosmia), syn.n ., propose ‘odontogaster species group’ as a replacement for the subgeneric name Acanthosmioides, and refine the morphological characters that serve to diagnose the species group. We additionally propose ‘nigrifrons species group’ for a clade within O. (Melanosmia) containing most species formerly placed in Osmia (Centrosmia) Robertson. We demonstrate more cohesive patterns of nest substrate use in the nigrifrons and odontogaster species groups than was previously believed to occur, reconsider character polarity of aspects of the female mandible, and show that a large number of morphological characters have evolved convergently within the genus. In order to facilitate discussion of relevant taxa, we propose the following 15 new synonymies: O. bakeri Sandhouse under O. melanopleura Cockerell; O. crenulaticornis Michener under O. pinorum Cockerell; O. claremontensis Michener under O. sedula Sandhouse; O. cockerelli Sandhouse under O. dakotensis Michener; O. francisconis White under O. enixa Sandhouse; O. hurdi White under O. austromaritima Michener; O. sladeni Sandhouse under O. nifoata Cockerell; O. titusi Cockerell under O. phenax Cockerell; O. subtrevoris Cockerell, O. physariae Cockerell, and O. erecta Michener under O. giliarum Cockerell; and O. universitatis Cockerell, O. integrella Cockerell, O. amala Cockerell, and O. metitia Cockerell under O. nigrifrons Cresson, syn.n . We remove O. wyomingensis Michener from synonymy with O. nifoata Cockerell, stat.n ., and O. pinorum Cockerell from synonymy with O. physariae Cockerell, stat.n . This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:A3E7D63B‐5C4C‐4ACF‐BF33‐48E5C5DD1B0D .  相似文献   

11.
A special strain of Saccharomyces cerevisiae responded to a supplement of S-n-propyl-l-homocysteine in the culture medium by synthesizing S-adenosyl-(S-n-propyl)l-homycysteine, the S-n-propyl analogue of S-adenosylmethionine. S-n-Butyl-l-homocysteine reacted sparingly with this strain, but S-isopropyl-l-homocysteine failed to form detectable quantities of the corresponding S-adenosylsulfonium were compound. The S-n-propyl compound was isolated by extraction of the cells, followed by ion-exchange chromatography, which separated it from endogenous S-adenosylmethionine. The structure was determined by hydrolytic procedures leading to overlapping fragments of known structure, 5′-n-propylthioadenosine and S-n-propyl-l-homocysteine. The new sulfonium compound was examined for its activity as n-propyl donor by substituting it for S-adenosylmethionine in methyltransferase systems. Enzymatic transpropylation was observed with S-adenosylmethionine: l-homocysteine S-methyltransferase (EC 2.1.1.10). Its rate was low in the S-adenosylmethionine: N-acetylserotonin O-methyltransferase system (EC 2.1.1.4), and below recognition with S-adenosylmethionine: guanidonoacetate methyltransferase (EC 21.1.2) and S-adnosylmethionine: histame N-methyltransferase (EC 2.1.1.8).  相似文献   

12.
Recently, two Bacillus thuringiensis strains were reported to synthesize parasporal inclusion bodies made not of the expected crystal (Cry) proteins but rather of the surface layer proteins (SLP) Sap (encoded by sap) and EA1 (encoded by eag), respectively. Whether the presence of the sap and eag genes is restricted to these two B. thuringiensis strains or ubiquitous in B. thuringiensis is unknown. We report here the distribution of the sap and eag genes in B. thuringiensis. Strains in the Bacillus cereus group were added for comparison purposes. We show that sap and eag are either present in tandem in 35% of the B. thuringiensis strains analysed and absent in 65% of the strains. When absent, a different tandem, the lytB/lytA cell wall hydrolase genes, is present. The distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes is not species-specific in B. thuringiensis, B. cereus and Bacillus weihenstephanensis. Bacillus anthracis and Bacillus mycoides harbor sap and eag but not lytB/lytA. The sap, eag and lytB/lytA genes were absent in Bacillus pseudomycoides. Clearly, the distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes in B. thuringiensis and in the Bacillus cereus group is mutually exclusive. We also showed that two genes involved in cell wall metabolism, csaA and csaB, are present not only upstream of the sap and eag S-layer genes, but also upstream of the lytB/lytA tandem in strains where sap and eag are absent. Bootstrapped neighbor-joining trees were inferred from the translated amino acid sequences of sap, eag and the tandem lytB/lytA, respectively.  相似文献   

13.
Fifty-two endophytic fungi strains with different colony morphologies were isolated from stems, leaves and roots of Huperzia serrata (Thunb. ex Murray) Trevis. collected from Bawangling Reserve of Hainan Province in southern China. They were identified mainly based on rDNA ITS sequences and phylogenetic analysis. The results showed that all strains belonged to four classes, i.e. Sordariomycetes (92.31%), Dothideomycetes (3.85%), Pezizomycetes (1.92%) and Agaricomycetes (1.92%). Forty-seven strains were identified at the genus level, including Glomerella (Colletotrichum), Hypocrea (Trichoderma), Pleurostoma, Chaetomium, Coniochaeta (Lecythophora), Daldinia, Xylaria, Hypoxylon, Nodulisporium, Cazia and Phellinus. As to the other five strains, three were identified at the order level and two at the family level, indicating that a great diversity of fungi taxa exists in H. serrata. Most isolated strains belonged to the genus of Glomerella (Colletotrichum) and Hypoxylon, twenty-one from Glomerella and its anamorph Colletotrichum (42.3% of total isolated strains) and ten from Hypoxylon (19.2% of total isolated strains). Pleurostoma, Chaetomium, Coniochaeta (Lecythophora), Daldinia, Xylaria, Hypoxylon, Nodulisporium, Cazia and Phellinus were reported as endophytic fungi isolated from H. serrata for the first time.  相似文献   

14.
Work on the exceptionally well-preserved, rapidly accumulating Bath Cliff Section, Barbados and supplementary Deep Sea Drilling Project samples, has revealed the evolutionary origins of three stratigraphically useful species in theCryptoprora ornata Zone straddling the Eocene/Oligocene boundary and demonstrated the origin of the genusCyclampterium. Elucidation of the origin ofCyclampterium milowi necessitates a revision of the generaLophocyrtis andCyclampterium.Lophocyrtis (Lophocyrtis)jacchia is the ancestor ofL. (Cyclampterium)hadra, the earliest member in the subgenusCyclampterium which comprises the anagenetic lineage leading fromL. (C.)hadra toL. (C.)neatum. The monotypic subgenusSciadiopeplus branches off from an early member in theCyclampterium lineage. The new speciesL. (L.)exitelus andL. (S.)oberhaensliae terminate the subgeneraLophocyrtis andSciadiopeplus, respectively. During the investigation it also became clear that morphotypes resembling earlyL. (C.)milowi could be found in mid and high latitude assemblages in the late Early and late Middle Eocene. The origin of one these morphotypes was also traced toL. (Lophocyrtis)jacchia giving rise to the new subgenusParalampterium. This lineage includes the new speciesL. (Paralampterium)dumitricai and two species questionably assigned to it,L. (Paralampterium)?longiventer and the new speciesL. (Paralampterium) ?galenum. The relationship ofL. (P.)dumitricai toL. (P.) ?longiventer andL. (P.) ?galenum is unknown.  相似文献   

15.
Chen  Xiongwen  Zhou  Guangsheng  Zhang  Xinshi 《Plant Ecology》2003,164(1):65-74
Spatial characteristics of sixteen tree species were analyzed by theinformation from 287 permanent plots in 1986 and 1994 on North East ChinaTransect (NECT). Some species expanded and some retracted theirdistribution extents. Betula costata andPhellodendron amurense spread most fast toward west andeast, respectively. All tolerant tree species extended their frontiers and allintolerant tree species retracted their frontiers except Betulaplatyphylla. The distribution area decreased for all species exceptBetula costata, Juglans mandshurica,Ulmus spp. and Fraxinusrhynchophylla.The patch sizes of Pinus koraiensis, Populusdavidiana, Phellodendron amurense,Juglans mandshurica, Fraxinusmandshurica, Betula dahurica,Picea spp., Abies nephrolepis andLarixolgensis decreased, however, the patch sizes of Quercusmongolica, Betula costata, Acermono, Tilia spp., Ulmusspp., Betula platyphylla and Fraxinusrhynchophylla increased. The frequency pattern of Populusdavidiana, Betula platyphylla,Fraxinus rhynchophylla and Betuladahurica changed significantly(p< 0.05). The dominance pattern ofPopulus davidiana, Tilia spp.,Juglans mandshurica, Betulaplatyphylla, Betula dahurica andAbiesnephrolepis changed significantly(p < 0.05). The spatial correlation betweenspecies changed, such as the spatial correlation between Larixolgensis and Betula platyphylla, Acermono and Ulmus spp. increased. The possiblecause of these changes might be climate change, disturbances and habitat loss.  相似文献   

16.
Phylogenetic relationships of Genista and related genera (Teline, Chamaespartium, Pterospartum, Echinospartum, Ulex, Stauracanthus and Retama) were assessed by the analysis of sequences of the nrDNA internal transcribed spacer (ITS region), and the cpDNA trnL-trnF intergenic spacer. The tree obtained by combining both sets of data indicates the existence of three lines of diversification within Genista, that correspond to three subgenera: Genista, Phyllobotrys and Spartocarpus, however, each of these lineages encompass also species of the related genera Echinospartum, Teline, Retama, Chamaespartium, Pterospartum, Ulex, Stauracanthus. The molecular data do not support division of these subgenera into taxonomical units at the sectional level; only sections Genista and Spartocarpus are monophyletic groups. The sequences of both regions are also informative at the specific level, grouping morphologically related species (e.g. the G. cinerea aggregate). The molecular data have also helped to clarify the position of taxa whose relationships were not well established (e.g. G. valdes-bermejoi). The relationships of related genera that belong to the Genista lines of diversification have also been investigated. Echinospartum splits into two separate clades matching the separation of two ecological and caryological differentiated groups. Teline also forms two groups, both placed near to Genista subgenus Genista, but that separated from the main core of the group. Retama, morphologically well differentiated from Genista, is close to Genista subgenus Spartocarpus. Chamaespartium and Pterospartum do not form a monophyletic group. Chamaespartium is closer to Genista subgenus Genista, whereas Pterospartum stands close to: 1) Genista subgenus Spartocarpus (particularly, sect. Cephalospartum); and 2) the Ulex-Stauracanthus clade (a terminal derivative of Genista subgenus Spartocarpus). Cases of incongruence (e.g. Echinospartum, Chamaespartium, Teline) between the trees obtained from the two molecular markers, may be indicating hybridisation and/or introgression between different lines of Genisteae.  相似文献   

17.
Desmids from 12 freshwater resources in the northern part of Thailand were investigated during 2002 to 2003. A total of 91 taxa were found. They belonged to 17 genera: Actinotaenium, Spirotaenia, Netrium, Gonatozygon, Pleurotaenium, Closterium, Euastrum, Micrasterias, Cosmarium, Cosmocladium, Stuarastrum, Staurodesmus, Xanthidium, Teilingia, Spondylosium, Hyalotheca and Desmidium. The water qualities in all the water resources were classified as oligotrophic to meso-eutrophic by trophic status. The taxa that could possibly be used as bioindicators of trophic state were Staurastrum gutwinskii, Spondylosium pandurifoemae, Cosmarium capitulum, C. mediosrobiculatum var. egranutum, S. tortum, Closterium gracile var. elongatum, C. kuetzingii and Closterium dianae var. dianae. The most frequently found taxa were Staurastrum limneticum var. burmense, S. tetracerum var. tetraerum, Pleurotaenium trabecula, Closterium ehrenbergii var. ehrenbergii and C. kuetzingii. The rare taxa in this study were Actinotaenium sp. Spirotaenia condensata, Pleurotaenium burmense var. dacchense and Micrasterias apiculata. Forty-one taxa of desmids were identified as new records for Thailand. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

18.
Abstract Phytomyza Fallén is the largest genus of leaf‐mining flies (Agromyzidae), with over 530 described species. Species of the superficially similar genus Chromatomyia Hardy have been included in Phytomyza by some authors and the status of the genus remains uncertain. Using 3076 bp of DNA sequence from three genes [cytochrome oxidase I (COI), CAD (rudimentary), phosphogluconate dehydrogenase (PGD)] and 113 exemplar species, we identified and tested the monophyly of host‐associated species groups in Phytomyza and Chromatomyia and investigated the phylogenetic relationships among these groups. Chromatomyia is polyphyletic and nested largely within Phytomyza; two small groups of species, however, are related more closely to Ptochomyza and Napomyza. Therefore, we synonymize Chromatomyia syn.n. , Ptochomyza syn.n. , and Napomyza syn.n. with Phytomyza, recognizing Ptochomyza, Napomyza and Phytomyza sensu stricto as subgenera of Phytomyza. We recognize five major clades within Phytomyza sensu stricto that comprise the majority of species ascribed previously to Chromatomyia and Phytomyza. Many species groups recognized previously were recovered as monophyletic, or virtually so, but some (e.g. robustella and atomaria groups) required emendation. On the basis of the proposed phylogeny and recent taxonomic literature, we present a preliminary revision of 24 species groups within Phytomyza, but leave many species unplaced. Evolution of internal pupariation (within the host’s tissue), regarded as a defining character of the former Chromatomyia, is discussed with regard to the new phylogeny, and we suggest a correlation with stem or leaf midrib mining. The large size of the Phytomyza lineage and an inferred pattern of host family‐specific species radiations make it a promising candidate for the study of macroevolutionary patterns of host shift and diversification in phytophagous insects. The proposed generic synonymies necessitate a number of new combinations. The following 46 species described in Chromatomyia are transferred to Phytomyza: P. actinidiae (Sasakawa) comb.n. , P. alopecuri (Griffiths) comb.n. , P. arctagrostidis (Griffiths) comb.n. , P. beigerae (Griffiths) comb.n. , P. blackstoniae (Spencer) comb.n. , P. centaurii (Spencer) comb.n. , P. chamaemetabola (Griffiths) comb.n. , P. cinnae (Griffiths) comb.n. , P. compta (Spencer) comb.n. , P. cygnicollina (Griffiths) comb.n. , P. doolittlei (Spencer) comb.n. , P. elgonensis (Spencer) comb.n. , P. eriodictyi (Spencer) comb.n. , P. flavida (Spencer) comb.n. , P. fricki (Griffiths) comb.n. , P. furcata (Griffiths) comb.n. , P. griffithsiana (Beiger) comb.n. , P. hoppiella (Spencer) comb.n. , P. ixeridopsis (Griffiths) comb.n. , P. kluanensis (Griffiths) comb.n. , P. leptargyreae (Griffiths) comb.n. , P. linnaeae (Griffiths) comb.n. , P. luzulivora (Spencer) comb.n. , P. mimuli (Spencer) comb.n. , P. mitchelli (Spencer) comb.n. , P. montella (Spencer) comb.n. , P. nigrilineata (Griffiths) comb.n. , P. nigrissima (Spencer) comb.n. , P. orbitella (Spencer) comb.n. , P. paraciliata (Godfray) comb.n. , P. poae (Griffiths) comb.n. , P. pseudomilii (Griffiths) comb.n. , P. qinghaiensis (Gu) comb.n. , P. rhaetica (Griffiths) comb.n. , P. scabiosella (Beiger) comb.n. , P. seneciophila (Spencer) comb.n. , P. shepherdiana (Griffiths) comb.n. , P. spenceriana (Griffiths) comb.n. , P. styriaca (Griffiths) comb.n. , P. subnigra (Spencer) comb.n. , P. suikazurae (Sasakawa) comb.n. , P. symphoricarpi (Griffiths) comb.n. , P. syngenesiae (Hardy) comb.n. , P. thermarum (Griffiths) comb.n. , P. torrentium (Griffiths) comb.n. and P. tschirnhausi (Griffiths) comb.n. Furthermore, we transfer all species of Napomyza to Phytomyza, resulting in the following new combinations: P. achilleanella (Tschirnhaus) comb.n. , P. acutiventris (Zlobin) comb.n. , P. angulata (Zlobin) comb.n. , P. arcticola (Spencer) comb.n. , P. bellidis (Griffiths) comb.n. , P. carotae (Spencer) comb.n. , P. cichorii (Spencer) comb.n. , P. curvipes (Zlobin) comb.n. , P. dubia (Zlobin) comb.n. , P. filipenduliphila (Zlobin) comb.n. , P. flavivertex (Zlobin) comb.n. , P. flavohumeralis (Zlobin) comb.n. , P. genualis (Zlobin) comb.n. , P. grandella (Spencer) comb.n. , P. humeralis (Zlobin) comb.n. , P. immanis (Spencer) comb.n. , P. immerita (Spencer) comb.n. , P. inquilina (Kock) comb.n. , P. kandybinae (Zlobin) comb.n. , P. lacustris (Zlobin) comb.n. , P. laterella (Zlobin) comb.n. , P. manni (Spencer) comb.n. , P. maritima (Tschirnhaus) comb.n. , P. merita (Zlobin) comb.n. , P. mimula (Spencer) comb.n. , P. minuta (Spencer) comb.n. , P. montanoides (Spencer) comb.n. , P. neglecta (Zlobin) comb.n. , P. nigriceps (van der Wulp) comb.n. , P. nugax (Spencer) comb.n. , P. pallens (Spencer) comb.n. , P. paratripolii (Chen & Wang) comb.n. , P. plumea (Spencer) comb.n. , P. plumigera (Zlobin) comb.n. , P. prima (Zlobin) comb.n. , P. pubescens (Zlobin) comb.n. , P. schusteri (Spencer) comb.n. , P. scrophulariae (Spencer) comb.n. , P. suda (Spencer) comb.n. , P. tanaitica (Zlobin) comb.n. , P. tenuifrons (Zlobin) comb.n. , P. vivida (Spencer) comb.n. , P. xizangensis (Chen & Wang) comb.n. and P. zimini (Zlobin) comb.n. Phytomyza asparagi (Hering) comb.n. and P. asparagivora (Spencer) comb.n. are transferred from Ptochomyza. In Phytomyza ten new names are proposed for secondary homonyms created by generic synonymy: P. echo Winkler nom.n. for P. manni Spencer, 1986; P. californiensis Winkler nom.n. for C. montana Spencer, 1981 ; P. griffithsella Winkler nom.n. for C. griffithsi Spencer, 1986; P. vockerothi Winkler nom.n. for C. nigrella Spencer, 1986; P. kerzhneri Winkler nom.n. for N. nigricoxa Zlobin, 1993; P. asteroides Winkler nom.n. for N. tripolii Spencer, 1966; P. minimoides Winkler nom.n. for N. minima Zlobin, 1994; P. nana Winkler nom.n. for N. minutissima Zlobin, 1994; P. ussuriensis Winkler nom.n. for N. mimica Zlobin, 1994 and P. zlobini Winkler nom.n. for N. hirta Zlobin, 1994.  相似文献   

19.
FLOWERING LOCUS M (FLM) is a MADS-domain gene that acts as an inhibitor of flowering in Arabidopsis. Here we describe the genetic interaction of FLM with genes in the photoperiod and autonomous flowering pathways. Although the sequence of FLM is most similar to that of FLC, FLM and FLC interact with different flowering pathways. It has been previously shown that flc lesions suppress the late-flowering phenotype of FRI-containing lines and autonomous-pathway mutants. However, flm lesions suppress the late-flowering phenotype of photoperiod-pathway mutants but not that of FRI-containing lines or autonomous-pathway mutants. Another MADS-domain flowering repressor with a mutant phenotype similar to FLM is SVP. The late-flowering phenotype of FLM over-expression is suppressed by the svp mutation, and an svp flm double mutant behaves like the single mutants. Thus FLM and SVP are in the same flowering pathway which interacts with the photoperiod pathway. Abbreviations: CO, CONSTANS; FLC, FLOWERING LOCUS C; FLM, FLOWERING LOCUS M; FRI, FRIGIDA; GI, GIGANTEA; LD, LUMINIDEPENDENS; SVP, SHORT VEGETATIVE PHASE; FCA is not an abbreviation  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号