首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
High-affinity, sequence-specific DNA binding by Cys(2)-His(2) zinc finger proteins is mediated by both specific protein-base interactions and non-specific contacts between charged side-chains and the phosphate backbone. In addition, in DNA complexes of multiple zinc fingers, protein-protein interactions between the finger units contribute to the binding affinity. We present NMR evidence for another contribution to high- affinity binding, a highly specific DNA-induced helix capping involving residues in the linker sequence between fingers. Capping at the C terminus of the alpha-helix in each zinc finger, incorporating a consensus TGEKP linker sequence that follows each finger, provides substantial binding energy to the DNA complexes of zinc fingers 1-3 of TFIIIA (zf1-3) and the four zinc fingers of the Wilms' tumor suppressor protein (wt1-4). The same alpha-helix C-capping motif is observed in the X-ray structures of four other protein-DNA complexes. The structures of each of the TGEKP linkers in these complexes can be superimposed on the linker sequences in the zf1-3 complex, revealing a remarkable similarity in both backbone and side-chain conformations. The canonical linker structures from the zinc-finger-DNA complexes have been compared to the NMR structure of the TGEKP linker connecting fingers 1 and 2 in zf1-3 in the absence of DNA. This comparison reveals that additional stabilization likely arises in the DNA complexes from hydrogen bonding between the backbone amide of E3 and the side-chain O(gamma) of T1 in the linker. We suggest that these DNA-induced C-capping interactions provide a means whereby the multiple-finger complex, which must necessarily be domain-flexible in the unbound state as it searches for the correct DNA sequence, can be "snap-locked" in place once the correct DNA sequence is encountered. These observations provide a rationale for the high conservation of the TGEKP linker sequences in Cys(2)-His(2) zinc finger proteins.  相似文献   

3.
The RecQ family of DNA helicases has been shown to be important for the maintenance of genomic integrity. Mutations in human RecQ genes lead to genomic instability and cancer. Several RecQ family of helicases contain a putative zinc finger motif of the C4 type at the C terminus that has been identified in the crystalline structure of RecQ helicase from Escherichia coli. To better understand the role of this motif in helicase from E. coli, we constructed a series of single mutations altering the conserved cysteines as well as other highly conserved residues. All of the resulting mutant proteins exhibited a high level of susceptibility to degradation, making functional analysis impossible. In contrast, a double mutant protein in which both cysteine residues Cys397 and Cys400 in the zinc finger motif were replaced by asparagine residues was purified to homogeneity. Slight local conformational changes were detected, but the rest of the mutant protein has a well defined tertiary structure. Furthermore, the mutant enzyme displayed ATP binding affinity similar to the wild-type enzyme but was severely impaired in DNA binding and in subsequent ATPase and helicase activities. These results revealed that the zinc finger binding motif is involved in maintaining the integrity of the whole protein as well as DNA binding. We also showed that the zinc atom is not essential to enzymatic activity.  相似文献   

4.
Polycomb group proteins are epigenetic regulators that maintain patterns of gene expression over multiple rounds of cell division. Many of these proteins, including polyhomeotic and the MBT repeat containing proteins SCM and dSfmbt, contain an atypical C2C2 zinc finger with a characteristic phenylalanine–cysteine–serine sequence motif. The reoccurrence of this so‐called FCS zinc finger in a variety of polycomb group proteins suggests that it has an important regulatory function. We have determined the solution structure of the FCS zinc finger of the human dSfmbt homologue L(3)mbt‐like 2 (L3MBTL2). The structure consists of a β‐hairpin followed by an α‐helix. The zinc ligands are situated in the β‐hairpin and at the N‐terminus of the α‐helix an arrangement typical of the treble clef class of zinc fingers. The structure is consistent with the proposal that FCS zinc fingers bind to regulatory RNAs.  相似文献   

5.
Detection of similarity is particularly difficult for small proteins and thus connections between many of them remain unnoticed. Structure and sequence analysis of several metal-binding proteins reveals unexpected similarities in structural domains classified as different protein folds in SCOP and suggests unification of seven folds that belong to two protein classes. The common motif, termed treble clef finger in this study, forms the protein structural core and is 25-45 residues long. The treble clef motif is assembled around the central zinc ion and consists of a zinc knuckle, loop, beta-hairpin and an alpha-helix. The knuckle and the first turn of the helix each incorporate two zinc ligands. Treble clef domains constitute the core of many structures such as ribosomal proteins L24E and S14, RING fingers, protein kinase cysteine-rich domains, nuclear receptor-like fingers, LIM domains, phosphatidylinositol-3-phosphate-binding domains and His-Me finger endonucleases. The treble clef finger is a uniquely versatile motif adaptable for various functions. This small domain with a 25 residue structural core can accommodate eight different metal-binding sites and can have many types of functions from binding of nucleic acids, proteins and small molecules, to catalysis of phosphodiester bond hydrolysis. Treble clef motifs are frequently incorporated in larger structures or occur in doublets. Present analysis suggests that the treble clef motif defines a distinct structural fold found in proteins with diverse functional properties and forms one of the major zinc finger groups.  相似文献   

6.
The recently identified human NEIL2 (Nei-like-2) protein, a DNA glycosylase/AP lyase specific for oxidatively damaged bases, shares structural features and reaction mechanism with the Escherichia coli DNA glycosylases, Nei and Fpg. Amino acid sequence analysis of NEIL2 suggested it to have a zinc finger-like Nei/Fpg. However, the Cys-X2-His-X16-Cys-X2-Cys (CHCC) motif present near the C terminus of NEIL2 is distinct from the zinc finger motifs of Nei/Fpg, which are of the C4 type. Here we show the presence of an equimolar amount of zinc in NEIL2 by inductively coupled plasma mass spectrometry. Individual mutations of Cys-291, His-295, Cys-315, and Cys-318, candidate residues for coordinating zinc, inactivated the enzyme by abolishing its DNA binding activity. H295A and C318S mutants were also shown to lack bound zinc, and a significant change in their secondary structure was revealed by CD spectra analysis. Molecular modeling revealed Arg-310 of NEIL2 to be a critical residue in its zinc binding pocket, which is highly conserved throughout the Fpg/Nei family. A R310Q mutation significantly reduced the activity of NEIL2. We thereby conclude that the zinc finger motif in NEIL2 is essential for its structural integrity and enzyme activity.  相似文献   

7.
All retroviral nucleocapsid (NC) proteins, except those of spumaretroviruses, contain one or two copies of the conserved sequence motif C-X2-C-X4-H-X4-C. The conserved cysteine and histidine residues coordinate a zinc ion in each such motif. Rice et al. (W. G. Rice, J. G. Supko, L. Malspeis, R. W. Buckheit, Jr., D. Clanton, M. Bu, L. Graham, C. A. Schaeffer, J. A. Turpin, J. Domagala, R. Gogliotti, J. P. Bader, S. M. Halliday, L. Coren, R. C. Sowder II, L. 0. Arthur, and L. E. Henderson, Science 270:1194-1197, 1995) have described a series of compounds which inactivate human immunodeficiency virus type 1 (HIV-1) particles and oxidize the cysteine thiolates in the NC zinc finger. We have characterized the effects of three such compounds on Moloney murine leukemia virus (MuLV). We find that, as with HIV-1, the compounds inactivate cell-free MuLV particles and induce disulfide cross-linking of NC in these particles. The killed MuLV particles were found to be incapable of synthesizing full-length viral DNA upon infection of a new host cell. When MuLV particles are synthesized in the presence of one of these compounds, the normal maturational cleavage of the Gag polyprotein does not occur. The compounds have no effect on the infectivity of human foamy virus, a spumaretrovirus lacking zinc fingers in its NC protein. The resistance of foamy virus supports the hypothesis that the zinc fingers are the targets for inactivation of MuLV and HIV- I by the compounds. The absolute conservation of the zinc finger motif among oncoretroviruses and lentiviruses and the lethality of all known mutations altering the zinc-binding residues suggest that only the normal, wild-type structure can efficiently perform all of its functions. This possibility would make the zinc finger an ideal target for antiretroviral agents.  相似文献   

8.
9.
This paper presents the complete amino acid sequence of the low molecular weight acid phosphatase from bovine liver. This isoenzyme of the acid phosphatase family is located in the cytosol, is not inhibited by L-(+)-tartrate and fluoride ions, but is inhibited by sulfhydryl reagents. The enzyme consists of 157 amino acid residues, has an acetylated NH2 terminus, and has arginine as the COOH-terminal residue. All 8 half-cystine residues are in the free thiol form. The molecular weight calculated from the sequence is 17,953. The sequence was determined by characterizing the peptides purified by reverse-phase high performance liquid chromatography from tryptic, thermolytic, peptic, Staphylococcus aureus protease, and chymotryptic digests of the carboxymethylated protein. No sequence homologies were found with the two known acylphosphatase isoenzymes or the metalloproteins porcine uteroferrin and purple acid phosphatase from bovine spleen (both of which have acid phosphatase activity). Two half-cystines at or near the active site were identified through the reaction of the enzyme with [14C] iodoacetate in the presence or in the absence of a competitive inhibitor (i.e. inorganic phosphate). Ac-A E Q V T K S V L F V C L G N I C R S P I A E A V F R K L V T D Q N I S D N W V I D S G A V S D W N V G R S P N P R A V S C L R N H G I N T A H K A R Q V T K E D F V T F D Y I L C M D E S N L R D L N R K S N Q V K N C R A K I E L L G S Y D P Q K Q L I I E D P Y Y G N D A D F E T V Y Q Q C V R C C R A F L E K V R-OH.  相似文献   

10.
Simian virus 40 large T antigen contains a single sequence element with an arrangement of cysteines and histidines that is characteristic of a zinc finger motif. The finger region maps from amino acids 302 through 320 and has the sequence C-302 L K C-305 I K K E Q P S H Y K Y H-317 E K H-320. Previous genetic analysis has shown that the cysteine and histidine sequences and the contiguous S H Y K Y region in the finger are important for DNA replication in vivo. We show here that representative mutations in either of these elements of the finger prevent the assembly of large T antigen into stable hexamers in vitro. These same mutations have a characteristic effect on the interaction of T antigen with the simian virus 40 core origin of replication. The mutant T antigens bind to the central pentanucleotide domain of the core origin but fail to melt the adjacent inverted repeat domain and to untwist the adenine-thymine domain. These defects would prevent the formation of a replication bubble and the initiation of DNA replication. Finger mutations have lesser effects on the helicase function of T antigen and no observable effect on binding of T antigen to the mouse p53 protein. We propose that the zinc finger region contributes to protein-protein interactions essential for the assembly of stable T-antigen hexamers at the origin of replication and that hexamers are needed for subsequent alterations in the structure of origin DNA. We cannot exclude the possibility that the zinc finger region also makes specific contacts with components of origin DNA.  相似文献   

11.
12.
The zinc finger domain of the Wilms tumor suppressor protein (WT1) contains four canonical Cys(2)His(2) zinc fingers. WT1 binds preferentially to DNA sequences that are closely related to the EGR-1 consensus site. We report the structure determination by both X-ray crystallography and NMR spectroscopy of the WT1 zinc finger domain in complex with DNA. The X-ray structure was determined for the complex with a cognate 14 base-pair oligonucleotide, and composite X-ray/NMR structures were determined for complexes with both the 14 base-pair and an extended 17 base-pair DNA. This combined approach allowed unambiguous determination of the position of the first zinc finger, which is influenced by lattice contacts in the crystal structure. The crystal structure shows the second, third and fourth zinc finger domains inserted deep into the major groove of the DNA where they make base-specific interactions. The DNA duplex is distorted in the vicinity of the first zinc finger, with a cytidine twisted and tilted out of the base stack to pack against finger 1 and the tip of finger 2. By contrast, the composite X-ray/NMR structures show that finger 1 continues to follow the major groove in the solution complexes. However, the orientation of the helix is non-canonical, and the fingertip and the N terminus of the helix project out of the major groove; as a consequence, the zinc finger side-chains that are commonly involved in base recognition make no contact with the DNA. We conclude that finger 1 helps to anchor WT1 to the DNA by amplifying the binding affinity although it does not contribute significantly to binding specificity. The structures provide molecular level insights into the potential consequences of mutations in zinc fingers 2 and 3 that are associated with Denys-Drash syndrome and nephritic syndrome. The mutations are of two types, and either destabilize the zinc finger structure or replace key base contact residues.  相似文献   

13.
C2H2锌指蛋白转录因子家族在真核生物中具有重要的生物学功能,广泛参与植物叶的发生、花器官的调控、侧枝的形成及逆境胁迫等生命过程。植物C2H2锌指蛋白不仅结合DNA和RNA,而且与蛋白质之间相互作用。本研究利用普通烟草(Nicotiana tabacum)基因组数据库,运用Blastp比对,结合Pfam和SMART分析,鉴定了118条普通烟草C2H2锌指蛋白家族成员;对烟草C2H2锌指蛋白家族进行了进化树分析、结构域分析、物理化学性质分析、染色体定位、基因结构分析、三维结构分析及组织表达分析等。结果表明:不同成员的氨基酸长度差异较大;系统进化及结构域分析显示,所有C2H2家族成员可以被分为5个亚家族,同一亚家族成员之间在结构域和理化性质上呈现较高一致性;每个成员都含有C2H2结构域,在数量上存在较大差异;将所有基因家族成员定位在22条染色体上;组织表达分析表明,每个C2H2亚家族都有成员在不同组织中表达,在叶及根中有些基因的表达量较高。  相似文献   

14.
THAP1, the founding member of a previously uncharacterized large family of cellular proteins (THAP proteins), is a sequence-specific DNA-binding factor that has recently been shown to regulate cell proliferation through modulation of pRb/E2F cell cycle target genes. THAP1 shares its DNA-binding THAP zinc finger domain with Drosophila P element transposase, zebrafish E2F6, and several nematode proteins interacting genetically with the retinoblastoma protein pRb. In this study, we report the three-dimensional structure and structure-function relationships of the THAP zinc finger of human THAP1. Deletion mutagenesis and multidimensional NMR spectroscopy revealed that the THAP domain of THAP1 is an atypical zinc finger of approximately 80 residues, distinguished by the presence between the C2CH zinc coordinating residues of a short antiparallel beta-sheet interspersed by a long loop-helix-loop insertion. Alanine scanning mutagenesis of this loop-helix-loop motif resulted in the identification of a number of critical residues for DNA recognition. NMR chemical shift perturbation analysis was used to further characterize the residues involved in DNA binding. The combination of the mutagenesis and NMR data allowed the mapping of the DNA binding interface of the THAP zinc finger to a highly positively charged area harboring multiple lysine and arginine residues. Together, these data represent the first structure-function analysis of a functional THAP domain, with demonstrated sequence-specific DNA binding activity. They also provide a structural framework for understanding DNA recognition by this atypical zinc finger, which defines a novel family of cellular factors linked to cell proliferation and pRb/E2F cell cycle pathways in humans, fish, and nematodes.  相似文献   

15.
Marin EP  Krishna AG  Sakmar TP 《Biochemistry》2002,41(22):6988-6994
Photoactivated rhodopsin (R) catalyzes nucleotide exchange by transducin, the heterotrimeric G protein of the rod cell. Recently, we showed that certain alanine replacement mutants of the alpha5 helix of the alpha subunit of transducin (Galpha(t)) displayed very rapid nucleotide exchange rates even in the absence of R [Marin, E. P., Krishna, A. G., and Sakmar, T. P. (2001) J. Biol. Chem. 276, 27400-27405]. We suggested that R catalyzes nucleotide exchange by perturbing residues on the alpha5 helix. Here, we characterize deletion, insertion, and proline replacement mutants of amino acid residues in alpha5. In general, the proline mutants exhibited rates of uncatalyzed nucleotide exchange that were 4-8-fold greater than wild type. The proline mutants also generally displayed decreased rates of R-catalyzed activation. The degree of reduction of the activation rate correlated with the position of the residue replaced with proline. Mutants with replacement of residues at the amino terminus of alpha5 exhibited mild (<2-fold) decreases, whereas mutants with replacement of residues at the carboxyl terminus of alpha5 were completely resistant to R-catalyzed activation. In addition, insertion of a single helical turn in the form of four alanine residues following Ile339 at the carboxyl terminus of alpha5 prevented R-catalyzed activation. Together, the results provide evidence that alpha5 serves an important function in mediating R-catalyzed nucleotide exchange. In particular, the data suggest the importance of the connection between the alpha5 helix and the adjacent carboxyl-terminal region of Galpha(t).  相似文献   

16.
17.
Zinc finger proteins: getting a grip on RNA   总被引:11,自引:0,他引:11  
C2H2 (Cys-Cys-His-His motif) zinc finger proteins are members of a large superfamily of nucleic-acid-binding proteins in eukaryotes. On the basis of NMR and X-ray structures, we know that DNA sequence recognition involves a short alpha helix bound to the major groove. Exactly how some zinc finger proteins bind to double-stranded RNA has been a complete mystery for over two decades. This has been resolved by the long-awaited crystal structure of part of the TFIIIA-5S RNA complex. A comparison can be made with identical fingers in a TFIIIA-DNA structure. Additionally, the NMR structure of TIS11d bound to an AU-rich element reveals the molecular details of the interaction between CCCH fingers and single-stranded RNA. Together, these results contrast the different ways that zinc finger proteins bind with high specificity to their RNA targets.  相似文献   

18.
植物C2H2型锌指蛋白的结构与功能   总被引:21,自引:3,他引:18  
黄骥  王建飞  张红生 《遗传》2004,26(3):414-418
  相似文献   

19.
The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV) contain small interaction (I) domains within their nucleocapsid (NC) sequences. These overlap the zinc finger motifs and function to provide the proper density to viral particles. There are two zinc fingers and at least two I domains within these Gag proteins. To more thoroughly characterize the important sequence features and properties of I domains, we analyzed Gag proteins that contain one or no zinc finger motifs. Chimeric proteins containing the amino-terminal half of RSV Gag and various portions of the carboxy terminus of murine leukemia virus (MLV) (containing one zinc finger) Gag had only one I domain, whereas similar chimeras with human foamy virus (HFV) (containing no zinc fingers) Gag had at least two. Mutational analysis of the MLV NC sequence and inspection of I domain sequences within the zinc-fingerless C terminus of HFV Gag suggested that clusters of basic residues, but not the zinc finger motif residues themselves, are required for the formation of particles of proper density. In support of this, a simple string of strongly basic residues was found to be able to substitute for the RSV I domains. We also explored the possibility that differences in I domains (e.g., their number) account for differences in the ability of Gag proteins to be rescued into particles when they are unable to bind to membranes. Previously published experiments have shown that such membrane-binding mutants of RSV and HIV (two I domains) can be rescued but that those of MLV (one I domain) cannot. Complementation rescue experiments with RSV-MLV chimeras now map this difference to the NC sequence of MLV. Importantly, the same RSV-MLV chimeras could be rescued by complementation when the block to budding was after, rather than before, transport to the membrane. These results suggest that MLV Gag molecules begin to interact at a much later time after synthesis than those of RSV and HIV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号