首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The purpose of the present work was to determine whether dietary selenium (Se) deficiency could influence the injurious effect of human viruses other than Coxsackie virus B3 (CVB3) on mouse heart. Weanling C3H/HeN mice were fed a Se-deficient or Se-adequate diet for 4 wk and then were inoculated intraperitoneally with one of the following viruses: Coxsackie virus B1 (CVB1), echovirus 9 (EV9), Coxsackie virus A9 (CVA9), or herpes simplex 1 (HSV1). Polio virus 1 (PV1) was employed as a negative control. Prior to inoculation, mean serum Se levels were 430 versus 61 ng/mL in adequate versus deficient mice, respectively. Ten days later, hearts were removed and processed by routine histological procedures. Cardiac lesions were scored according to the number and size of myocarditic foci. Significantly greater heart damage resulting from CVB1 and EV9 was observed in Se-deficient than in Se-adequate mice, and the Se status had no influence on CVA9-induced myocarditis. In contrast, heart damage caused by HSV1 was significantly milder in Se-deficient than in Se-adequate mice. Therefore, it may be concluded that the Se status of the murine host selectively influences the degree of viral-induced myocarditic lesions.  相似文献   

3.
To determine the effect of Se status on the level of mRNA for Se-dependent glutathione peroxidase (EC 1.11.1.9), rats were fed either a Se-deficient torula yeast diet (less than 0.02 mg Se/kg diet) or a Se-adequate diet (+0.2 mg Se/kg as Na2SeO3) for greater than 135 d. Liver glutathione peroxidase activity was 0.025 for Se-deficient versus 0.615 EU/mg protein for Se-adequate rats. Total liver RNA and polyadenylated RNA were isolated and subjected to Northern blot analysis using a 700 bp DNA probe from cloned murine glutathione peroxidase. Autoradiography showed that Se-deficient liver had 7-17% of the mRNA for glutathione peroxidase present in Se-adequate liver, suggesting that Se status may regulate the level of mRNA for this selenoenzyme.  相似文献   

4.
Interacting nutritional and infectious etiologies of Keshan disease   总被引:7,自引:0,他引:7  
In 1979, Chinese scientists reported that selenium had been linked to Keshan disease, an endemic juvenile cardiomyopathy found in China. However, certain epidemiological features of the disease could not be explained solely on the basis of inadequate selenium nutrition. Fluctuations in the seasonal incidence of the disease suggested involvement of an infectious agent. Indeed, a coxsackievirus B4 isolated from a Keshan disease victim caused more heart muscle damage when inoculated into selenium-deficient mice than when given to selenium-adequate mice. Those results led us to study the relationship of nutritional status to viral virulence. Coxsackievirus B3/0 (CVB3/0), did not cause disease when inoculated into mice fed adequate levels of Se and vitamin E. However, mice fed diets deficient in either Se or vitamin E developed heart lesions when infected with CVB3/0. To determine if the change in viral phenotype was maintained, we passaged virus isolated from Se-deficient hosts, maintained, we passaged virus isolated from Se-deficient hosts, designated as CVB3/0 Se-, back into Se-adequate hosts. The CVB3/0 Se- virus caused disease in Se-adequate mice. To determine if the phenotype change was due to changes in the viral genome, we sequenced viruses isolated from Se-deficient mice and compared them with the input CVB3/0 virus. Six point mutations differed between the parent strain and the recovered CVB3/0 Se- isolates. When the experiment was repeated using vitamin E-deficient mice, the same 6 point mutations were found. This is the first report of a specific host nutritional deficiency altering viral genotype. Keshan disease may be the result of several interacting causes including a dominant nutritional deficiency (selenium), other nutritional factors (vitamin E, polyunsaturated fatty acids), and an infectious agent (virus).  相似文献   

5.
To enunciate the mechanisms whereby Se protects against cardiovascular diseases, weanling male Wistar rats were fed deficient (0.022 mg/kg diet) and adequate (0.159 mg/kg diet) Se diets for 14 and/or 39 wk. As the Se content and glutathione peroxidase activity were decreased and the lipid peroxide level was increased, the plasma 6-keto-PGF concentration of the Se-deficient group was markedly decreased in blood and tissues of the Se-deficient rats, as compared with the Se-adequate animals. Furthermore, the Se-deficient group had significantly lower plasma nitric oxide content and vascular nitric oxide synthase activity, higher erythrocyte sedimentation equation K value and aggregation index, and lower erythrocyte deformability than the Se-adequate group. Experimental Se deficiency also resulted in significant increases in serum total cholesterol and low-density lipoprotein cholesterol levels and a significant decrease in serum high-density lipoprotein cholesterol level. These results give some experimental supports to the hypothesis that low Se status and lipid peroxidation are involved in the etiology of cardiovascular diseases.  相似文献   

6.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

7.
Although the metabolic and toxicological interactions between essential element selenium (Se) and toxic element cadmium (Cd) have been reported for a long time, the experimental studies explored mostly acute, high-dose interactions. Limited data are available regarding the effects of Se-deficiency on toxicokinetics of cadmium, as well as on the levels of key trace elements—copper, zinc, and iron. In the present study, male and female Wistar weanling rats (n = 40/41) were fed either Se-deficient or Se-adequate diet (<0.06 or 0.14 mg Se per kilogram diet, respectively) for 12 weeks, and from week 9 were drinking water containing 0 or 50 mg Cd/l as cadmium chloride. At the end of the 12-week period, trace element concentrations were estimated by AAS. Selenium-deficient rats of both genders showed significantly lower accumulation of cadmium in the liver, compared to Se-adequate rats. Zinc and iron hepatic levels were not affected by Se-deficiency. However, a significant elevation of copper was found in the liver of Se-deficient rats of both genders. Cadmium supplementation increased zinc and decreased iron hepatic level, regardless of Se status and decreased copper concentration in Se-adequate rats. Se-deficiency was also found to influence the effectiveness of cadmium mobilization in male rats.  相似文献   

8.
Selenium (Se) is a dietary trace element that is essential for effective immunity and protection from oxidative damage induced by ultraviolet radiation (UVR). Langerhans cells (LC) represent the major antigen-presenting cells resident in the epidermis; a proportion migrate from the skin to the draining lymph nodes in response to UVR. Because it is known that Se deficiency impairs immune function, we determined what effect this has on LC numbers. CH3/HeN mice were weaned at 3 wk and placed on diets containing <0.005 ppm of Se (Se deficient) or 0.1 ppm of Se (Se adequate, control mice). After 5 wk on the diet, the epidermal LC numbers in the Se-adequate group were 966±51 cells/mm2 and LC counts in the epidermis of the Se-deficient mice were 49% lower (p<0.05). Glutathione peroxidase-I (GPx) activity was measured in the epidermis, lymph nodes, and liver. In the epidermis, the activity of GPx in the Se-deficient mice was only 39% (p<0.01) of that seen in epidermis from Se-adequate mice (1.732 U/mg protein). The mice were then irradiated with one dose of 1440 J/m2 of broadband UVB or mock irradiated. After 24 h, the decrease in LC number after UVB was greater in the Se-adequate mice, (40% decrease) compared to the Se-deficient group (10%). Thus, Se deficiency reduces epidermal LC numbers, an effect that might compromise cutaneous immunity.  相似文献   

9.
Mammalian thioredoxin reductase (TRR; NADPH2:oxidized thioredoxin oxidoreductase, E.C. 1.6.4.5) is a new member of the family of selenocysteine-containing proteins. TRR activity in Se-deficient rat liver is reported to decrease to 4.5 to 15% of the activity in Se-adequate rat liver, similar to the fall in Se-dependent glutathione peroxidase-1 activity. Both glutathione peroxidase-1 enzyme activity and mRNA levels decrease dramatically in Se deficiency, whereas glutathione peroxidase-4 activity only decreases to 40% of Se-adequate levels and mRNA level is little affected by Se deficiency. The purpose of these experiments is to study the effect of Se status on TRR mRNA levels and enzyme activity in our well-characterized rat model, and to compare this regulation directly to the regulation of other Se-dependent proteins in male weanling rats fed Se-deficient diets or supplemented with dietary Se for 28 days. In two experiments, TRR activity in Se-deficient liver decreased to 15% of Se-adequate activity as compared to 2% and 40% of Se-adequate levels for GPX1 and GPX4, respectively. Using ribonuclease protection analysis, we found that TRR mRNA levels in Se-deficient rat liver decreased to 70% of Se-adequate levels. This decrease in TRR mRNA was similar to the GPX4 mRNA decrease in Se-deficient liver in these experiments, whereas GPX1 mRNA levels decreased to 23% of Se-adequate levels. This study clearly shows that TRR represents a third pattern of Se regulation with dramatic down-regulation of enzyme activity in Se deficiency but with only a modest decrease in mRNA level. The conservation of TRR mRNA in Se deficiency suggests that this is a valued enzyme; the loss of TRR activity in Se deficiency may be the cause of some signs of Se deficiency.  相似文献   

10.
Dietary intake of the essential trace element selenium (Se) regulates expression of genes for seleno-proteins and certain non-Se-containing proteins. However, these proteins do not account for all of Se's biological effects. The objective of this work was to identify additional genes whose expression is regulated by Se. Identification of these genes may reveal new functions for Se or define mechanisms for its biological effects. Weanling male Sprague-Dawley rats were fed a Torula yeast-based Se-deficient basal diet or the same diet supplemented with 0.5 mg Se/kg diet as sodium selenite for 13 weeks. Total RNA was used as template for RNA fingerprinting. Two differentially expressed cDNA fragments were identified and cloned. The first had 99% nucleotide identity with rat liver estrogen sulfotransferase (EST) isoform-6. The second had 99% nucleotide sequence identity with rat liver 2u-globulin. The mRNA levels for both were markedly reduced in Se deficiency. Laser densitometry showed that EST mRNA in Se deficiency was 7.3% of that in Se-adequate rat liver. The level of 2u-globulin mRNA in Se-deficient rat liver was only 12.6% of that in Se-adequate rat liver. These results indicate that dietary Se may play a role in steroid hormone metabolism in rat liver.  相似文献   

11.

Background

Susceptibility or resistance to infection with Cryptosporidium parvum (C.parvum) correlates with Selenium (Se) deficiency in response to infection. Both adult Se-adequate and Se-deficient mouse models of cryptosporidiosis were used to study the cell-mediated immune response during the course of C. parvum infection.

Methodology/Principal Findings

Blood samples from mouse models were used for Se status. The concentration of MDA, SOD, GPx and CAT in blood has revealed that lower Se level exist in Se-deficient mice. Mesenteric lymph node (MLN) lymphocytes from both mouse models were proliferated after ex vivo re-stimulation with C. parvum sporozoite antigen. The study of the cytokine profiles from the supernatant of proliferated MLN cells revealed that Se-adequate mice produced higher levels of Th1 (IFN-γ and IL-2) and moderate amounts of Th2 (IL-4) cytokines throughout the course of infection. Whereas, MLN cells from Se-deficient mice produced lower levels of IFN-γ, IL-2 and IL-4 cytokines. The counts of total white cell and CD3, CD4, CD8 cell in Se-adequate were higher than that in Se-deficient mice.

Significance

These results suggest that Cell immunity is affected by Se status after infection with C.parvum from kinetic changes of different white cells and cytokine. In conclusion, induced susceptibility of host is associated with an impaired antioxidant system following infection with C.parvum in C57BL/6 Selenium deficient mice.  相似文献   

12.
Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na2SeO3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.  相似文献   

13.
The selenoprotein, cellular glutathione peroxidase (cGPx), has an important role in protecting organisms from oxidative damage through reducing levels of harmful peroxides. The liver and kidney in particular, have important roles in selenium (Se) metabolism and Se is excreted predominantly in urine and feces. In order to characterize the dynamics of these pathways we have measured the time-dependent changes in the quantities of hepatic, renal, urinary, and fecal Se species in mice fed Se-adequate and Se-deficient diets after injection of (82)Se-enriched selenite. Exogenous (82)Se was transformed to cGPx in both the liver and kidney within 1 h after injection and the synthesis of cGPx decreased 1 to 6 h and continued at a constant level from 6 to 72 h after injection. The total amount of Se associated with cGPx in mice fed Se-deficient diets was found to be less than in mice fed Se-adequate diets. This finding indicated that cGPx synthesis was suppressed under Se-deficient conditions and did not recover with selenite injection. Excess Se was associated with selenosugar in liver and transported to the kidney within 1 h after injection, and then excreted in urine and feces within 6 h after injection. Any excess amount of Se was excreted mainly as a selenosugar in urine.  相似文献   

14.
《Reproductive biology》2020,20(3):441-446
In the present report, we determined the impact of dietary selenium (Se) deficiency and supplementation on the expression of two ER-resident selenoproteins i.e., Selenok and Selenom in the ovaries of aging mice. The mRNA expression of Selenok and Selenom (RT-qPCR) was significantly higher in the ovaries of mice fed diets supplemented with inorganic (ISe-S: 0.33 mg Se/kg) and organic (OSe-S: 0.33 mg Se/kg) Se compared to those fed a Se-deficient (Se-D: 0.08 mg Se/kg) diet and both Se-adequate (ISe-A: 0.15 mg Se/kg and OSe-A: 0.15 mg Se/kg) diets. Similarly, the protein signals of SELENOK (immunofluorescence assay) were also significantly higher in the Se-supplemented groups compared to those fed Se-D and Se-adequate (ISe-A and OSe-A) diets. Meanwhile, the rate of in vitro-produced blastocysts developing from MII oocytes was also evaluated and it was revealed that this rate was significantly higher in the Se-supplemented mice compared to those fed a Se-D diet. Altogether, the dietary Se supplementation increased the expression of Selenok (also its protein expression) and Selenom in the ovaries of aging mice, potentially contributing to an improved developmental potential of in vitro-matured M II oocytes.  相似文献   

15.
Selenium (Se) is an essential trace element in many life forms due to its occurrence as selenocysteine (Sec) residue in selenoproteins. However, little is known about the expression pattern of selenoproteins in the liver of layer chicken. To investigate the effects of Se deficiency on the mRNA expressions of selenoproteins in the liver tissue of layer chickens, 1-day-old layer chickens were randomly allocated into two groups (n?=?120/group). The Se-deficient group (?Se) was fed a Se-deficient corn–soy basal diet; the Se-adequate group as control (+Se) was fed the same basal diet supplemented with Se at 0.15 mg/kg (sodium selenite). The liver tissue was collected and examined for mRNA levels of 21 selenoprotein genes at 15, 25, 35, 45, 55, and 65 days old. The data indicated that the mRNA expressions of Gpx1, Gpx2, Gpx3, Gpx4, Sepn1, Sepp1, Selo, Sepx1, Selu, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, SPS2, Selm, SelPb, Sep15, and Sels were decreased (p?<?0.05), but not the levels of Dio3 and Seli (p?>?0.05). The results showed that the mRNA levels of 19 selenoprotein (except Seli and Dio3) genes in the layer chicken liver were regulated by diet Se level. The present study provided some compensated data about the roles of Se in the regulation of selenoproteins.  相似文献   

16.
17.
18.
Experiments were conducted to determine whether the increased glutathione S-transferase (GSH-T) activity associated with selenium (Se) deficiency is necessarily related to losses in the activity of Se-dependent glutathione peroxidase (SeGSHpx) in chicks. Nutritional Se status was altered in two ways: by treatment with an antagonist of Se utilization, aurothioglucose (AuTG), and by feeding diets containing excess Se. Chicks given AuTG (10–30 mg AU/kg, sc) had growth rates and hepatic GSH concentrations that were comparable to those of saline-treated controls; however, their plasma GSH levels exceeded those of either Se-deficient (6-fold) or-adequate (3-fold) saline-treated chicks. Hepatic SeGSHpx activities of AuTG-treated chicks were hals those of controls under conditions of Se-adequacy; however, this effect was not detected when Se was deficient. Hepatic GSH-TCDNB (assayed with 1-chloro-2,4-dinitrobenzene) activities of AuTG-treated chicks were significantly greater than those of controls when Se was deficient (i.e., when SeGSHpx activity was 12% of the Se-adequate level); however, deprivation of Se did not affect GSH-TCDNB activity in the absence of AuTG. chicks fed excess Se (6–20 ppm as Na2SeO3) in diets containing either low (2 IU/kg) or adequate (100 IU/kg) VE, showed hepatic GSH-TCDNB activities and GSH concentrations greater than those of Se-adequate (0.2 ppm Se) chicks by 100% and 40%, respectively. That increased hepatic GSH-TCDNB activity can occur because of either AuTG or excess Se status under conditions wherein SeGSHpx activity is not affected indicates that the transferase response is not directly related to changes in the peroxidase.  相似文献   

19.
Two experiments were conducted to determine the protection and the underlying mechanisms of cellular glutathione peroxidase (GPX1) against lethal, acute oxidative stress induced by an intraperitoneal injection of 24 mg diquat/kg body weight. In experiment 1, mortality and survival times were compared among selenium (Se)-adequate or deficient GPX1 knockout mice [GPX1(-/-)] and wild-type mice (WT). In experiment 2, mice from these four groups were euthanized at 0, 1, 2, and 3 h after the injection of diquat to elucidate the time course of oxidative events. The stress produced 100% mortality in all of the groups except for the Se-adequate WT, which were euthanized on day 7 for analysis. The Se-deficient WT and the Se-adequate GPX1(-/-) had similar survival times (4.1 and 3.9 h), which were longer (p < .05) than that of the Se-deficient GPX1(-/-) (2.4 h). However, these three GPX1-deficient groups had higher levels (p < .05) of hepatic F2-isoprostanes and carbonyl contents and/or plasma alanine aminotransferase activities than those of the Se-adequate WT. The diquat-induced formations of hepatic F2-isoprostanes in these animals peaked at 1 h and preceded the rise of plasma alanine aminotransferase in the Se-adequate GPX1(-/-). Responses of hepatic superoxide dismutase activities to the diquat treatment were affected by the GPX1 level. In conclusion, GPX1 is the major selenoprotein to protect mice against the lethal oxidative stress induced by diquat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号