首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrophoretic gel-based chemical cleavage of the mismatch method gives an incomplete view of the DNA conformational changes induced by a single base mismatch. This spectroscopic study investigates the permanganate oxidation reactions with matched and mismatched DNA under constant and variable temperature conditions. The results, which include the oxidation levels, reaction patterns with isosbestic points, color changes, thermal spectra, spectroscopy derivative, and gel separation and melting temperatures, provide a fundamental background for identification of oligonucleotides containing single base mismatches by chemical means.  相似文献   

2.
2-Amino-7-deazaadenine ((AD)A) was incorporated into oligodeoxynucleotides (ODN) and their base-pairing properties with natural nucleobases were investigated. In melting temperature (T(m)) experiments, the duplex containing an (AD)A/C base pair showed a high stability comparable to that containing (AD)A/T base pair. Destabilization of the duplex usually observed for existing degenerate bases was not observed. However, the incorporation efficiency of dCTP was only 1.8% for TTP in single-nucleotide insertion reactions using polymerase.  相似文献   

3.
It was found that nonenzymatic DNA methylation proceeds in water solution in the presence of S-adenosylmethionine (AdoMet). The main reaction products are thymine and 5-methylcytosine residues. It was shown that labelled thymine residues are formed also upon DNA incubation in the presence of [methyl-14C]methionine as well as [methyl-14C]cobalamine. Only cytosine reacts with AdoMet resulting in thymine production. AdoMet may be a potential mutagen that induces GC----AT transitions during DNA replication in the cell.  相似文献   

4.
Base pairs are propeller-twisted, buckled and staggered in DNA fragment crystals. These deformations were analyzed with isolated Watson-Crick base pairs using empirical potentials and buckle was found to almost linearly correlate with propeller. Interestingly, the thymine.adenine pair favours negative buckling for propellers mostly observed in DNA crystals while positive buckling is preferred by the cytosine.guanine pair. The propeller also induces opposite staggers in the adenine.thymine and guanine.cytosine base pairs.  相似文献   

5.
6.
Uracil-DNA glycosylase (UDG) protects the genome by removing mutagenic uracil residues resulting from deamination of cytosine. Uracil binds in a rigid pocket at the base of the DNA-binding groove of human UDG and the specificity for uracil over the structurally related DNA bases thymine and cytosine is conferred by shape complementarity, as well as by main chain and Asn204 side chain hydrogen bonds. Here we show that replacement of Asn204 by Asp or Tyr147 by Ala, Cys or Ser results in enzymes that have cytosine-DNA glycosylase (CDG) activity or thymine-DNA glycosylase (TDG) activity, respectively. CDG and the TDG all retain some UDG activity. CDG and TDG have kcat values in the same range as typical multisubstrate-DNA glycosylases, that is at least three orders of magnitude lower than that of the highly selective and efficient wild-type UDG. Expression of CDG or TDG in Escherichia coli causes 4- to 100-fold increases in the yield of rifampicin-resistant mutants. Thus, single amino acid substitutions in UDG result in less selective DNA glycosylases that release normal pyrimidines and confer a mutator phenotype upon the cell. Three of the four new pyrimidine-DNA glycosylases resulted from single nucleotide substitutions, events that may also happen in vivo.  相似文献   

7.
Summary The crosslinking abilities of osmium tetroxide, potassium dichromate and potassium permanganate towards bovine serum albumin and bovine -globulin were investigated by chromatography with Sephadex G-200. Osmium tetroxide had a moderate crosslinking ability towards these proteins, the others had little or none. Chromatography with Sephadex G-50 permitted the oxidative cleavage of the proteins by these oxidative fixation agents to be studied. Potassium permanganate caused much fragmentation of the proteins and destruction of the tyrosine and tryptophan residues. Osmium tetroxide and potassium dichromate caused only a small amount of protein cleavage. These results were corroborated by polyacrylamide gel electrophoresis and viscosimetric studies. The significance of the results for tissue fixation is discussed.  相似文献   

8.
9.
Synthetic DNA oligonucleotides can serve as efficient primers for DNA synthesis even when there is a single base mismatch between the primers and the corresponding DNA template. However, when the primer-template annealing is carried out with a mixture of primers and at low stringency the binding of a perfectly matched primer is strongly favored relative to a primer differing by a single base. This primer competition is observed over a range of oligonucleotide sizes from twelve to sixteen bases and with a variety of base mismatches. When coupled with the polymerase chain reaction, for the amplification of specific DNA sequences, competitive oligonucleotide priming provides a simple general strategy for the detection of single DNA base differences.  相似文献   

10.
Proton nuclear magnetic resonance (NMR) spectroscopy is employed to characterize the kinetics of base-pair opening in a series of 9mer duplexes containing different single base mismatches. The imino protons from the different mismatched, as well as fully matched, duplexes are assigned from the imino-imino region in the WATERGATE NOESY spectra. The exchange kinetics of the imino protons are measured from selective longitudinal relaxation times. In the limit of infinite exchange catalyst concentration, the exchange times of the mismatch imino protons extrapolate to much shorter lifetimes than are commonly observed for an isolated GC base pair. Different mismatches exhibit different orders of base-pair lifetimes, e.g. a TT mismatch has a shorter base-pair lifetime than a GG mismatch. The effect of the mismatch was observed up to a distance of two neighboring base pairs. This indicates that disruption in the duplex caused by the mismatch is quite localized. The overall order of base-pair lifetimes in the selected sequence context of the base pair is GC > GG > AA > CC > AT > TT. Interestingly, the fully matched AT base pair has a shorter base-pair lifetime relative to many of the mismatches. Thus, in any given base pair, the exchange lifetime can exhibit a strong dependence on sequence context. These findings may be relevant to the way mismatch recognition is accomplished by proteins and small molecules.  相似文献   

11.
This paper presents data on the elimination of hydroxylamine from Lupinus albus seeds when they were germinated in the presence of GABA and hydroxylamine. The possibility of an enzymatic reaction. ATP dependent, between GABA and hydroxylamine is discussed. Some kinetic properties from this reaction are studied.  相似文献   

12.
The DNA cytosine-C5 methyltransferase M. Hha I flips its target base out of the DNA helix during interaction with the substrate sequence GCGC. Binary and ternary complexes between M. Hha I and hemimethylated DNA duplexes were used to examine the suitability of four chemical methods to detect flipped-out bases in protein-DNA complexes. These methods probe the structural peculiarities of pyrimidine bases in DNA. We find that in cases when the target cytosine is replaced with thymine (GTGC), KMnO4proved an efficient probe for positive display of flipped-out thymines. The generality of this procedure was further verified by examining a DNA adenine-N6 methyltransferase, M. Taq I, in which case an enhanced reactivity of thymine replacing the target adenine (TCGT) in the recognition sequence TCGA was also observed. Our results support the proposed base-flipping mechanism for adenine methyltransferases, and offer a convenient laboratory tool for detection of flipped-out thymines in protein-DNA complexes.  相似文献   

13.
14.
15.
16.
17.
We found that single-stranded DNA oligomers containing a 7, 8-dihydro-8-oxoguanine (8-oxo-G) residue have high reactivity toward KMnO4; the oxidation of 8-oxo-G induces damage to the neighboring nucleotide residues. This paper describes the novel reaction in detail, including experiments that demonstrate the mechanism involved in the induction of DNA damage. The results using DNAs of various base compositions indicated that damaged G, T and C (but not A) sites caused strand scissions after hot piperidine treatment and that the damage around the 8-oxo-G occurred at G sites in both single and double strands with high frequency. The latter substrates were less sensitive to damage. Further, kinetic studies of the KMnO4reaction of single-stranded oligomers suggested that thereactivity of the DNA bases at the site 5'-adjacent to the 8-oxo-G was in the order G >A >T, C. This preference correlates with the electron donating abilities of the bases. In addition, we found that the DNA damage at the G site, which was connected with the 8-oxo-G by a long abasic chain, was inhibited in the above order by the addition of dG, dA or dC. On the other hand, the damage reactions proceeded even after the addition of scavengers for active oxygen species. This study suggests the involvement of a redox process in the unique DNA damage initiated by the oxidation of the 8-oxo-G.  相似文献   

18.
A new procedure for T specific cleavage of DNA fragments utilizing photoreaction with spermine has been described. Irradiation of 3'-[32P]-end-labeled DNA fragments for 10-20 min with a germicidal lamp emitting mainly 254-nm light in the presence of 1 M spermine in distilled water resulted in a T specific cleavage of the DNA chains. This method does not require piperidine treatment. By contrast, when the DNA fragments were irradiated in the presence of methylamine under similar conditions, both G and T bands with the intensity of G greater than T have appeared. A similar but less selective T cleavage has also been observed in the irradiation of 5'-[32P]-end-labeled DNA fragments in the presence of spermine followed by brief heating of the photolysate in a loading buffer for gel electrophoresis. The T specific photoreaction with spermine and the G greater than T reaction with methylamine described here may be conveniently used in combination with the standard Maxam-Gilbert's reactions to provide independent confirmatory readings.  相似文献   

19.
The requirement for Watson-Crick base pairing surrounding a nick in duplex DNA to be sealed by DNA ligase is the basis for oligonucleotide ligation assays that distinguish single base mutations in DNA targets. Experiments in a model system demonstrate that the minimum length of oligonucleotide that can be joined differs for different ligases. Thermus thermophilus (Tth) DNA ligase is unable to join any oligonucleotide of length six or less, while T4 DNA ligase and T7 DNA ligase are both able to join hexamers. The rate of oligonucleotide ligation by Tth DNA ligase increases between heptamer and nonamer. Mismatches which cause the duplex to be shortened by fraying, at the end distal to the join, slow the ligation reaction. In the case of Tth DNA ligase, mismatches at the seventh and eighth position 5'to the nick completely inhibit the ligation of octamers. The results are relevant to mechanisms of ligation.  相似文献   

20.
Lips J  Kaina B 《Mutation research》2001,487(1-2):59-66
Methylation at the O(6)-position of guanine (O(6)-MeG) by alkylating agents is efficiently removed by O(6)-methylguanine-DNA methyltransferase (MGMT), preventing from cytotoxic, mutagenic, clastogenic and carcinogenic effects of O(6)-MeG-inducing agents. If O(6)-MeG is not removed from DNA prior to replication, thymine will be incorporated instead of cytosine opposite the O(6)-MeG lesion. This mismatch is recognized and processed by mismatch repair (MMR) proteins which are known to be involved in triggering the cytotoxic and genotoxic response of cells upon methylation. In this work we addressed three open questions. (1) Is MGMT able to repair O(6)-MeG mispaired with thymine (O(6)-MeG/T)? (2) Do MMR proteins interfere with the repair of O(6)-MeG/T by MGMT? (3) Does MGMT show a protective effect if it is expressed after replication of DNA containing O(6)-MeG? Using an in vitro assay we show that oligonucleotides containing O(6)-MeG/T mismatches are as efficient as oligonucleotides containing O(6)-MeG/C in competing for MGMT repair activity, indicating that O(6)-MeG mispaired with thymine is still subject to repair by MGMT. The addition of MMR proteins from nuclear extracts, or of recombinant MutSalpha, to the in vitro repair assay did not affect the repair of O(6)-MeG/T lesions by MGMT. This indicates that the presence of MutSalpha still allows access of MGMT to O(6)-MeG/T lesions. To elucidate the protective effect of MGMT in the first and second replication cycle after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment, MGMT transfected CHO cells were synchronized and MGMT was inactivated by pulse-treatment with O(6)-benzylguanine (O(6)-BG). Thereafter, the recovered cells were treated with MNNG and subjected to clonogenic survival assays. Cells which expressed MGMT in the first and second cell cycle were more resistant than cells which expressed MGMT only in the second (post-treatment) cell cycle. Cells which did not express MGMT in both cell cycles were most sensitive. This indicates that repair of O(6)-MeG can occur both in the first and second cell cycle after alkylation protecting cells from the killing effect of the lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号