首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai) and one dalatiid species (Squaliolus aliae)]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer) displays two areae within its horizontal streak that likely allows detection of conspecifics'' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax) fall within the range 484–491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent deep-sea sharks. In particular, bioluminescent sharks possess higher rod densities, which might provide them with improved temporal resolution particularly useful for bioluminescent communication during social interactions.  相似文献   

2.
3.
4.
MOTIVATION: Tandem peptide repeats play a key role in self-assembly and aggregation processes. A notable example is the occurrence of tandem peptide repeats in prionic proteins and their role in the aggregation process that leads to the formation of the prion. One of the structural characteristics that is evident from the comparison of mammalian and yeast prion proteins is the presence of aromatic residues in their tandem repeats. These residues are accompanied by glycine residues before and/or after the aromatic amino acid. Such aromatic-glycine conjugates are also present in the tandem repeats of the large family of the bacterial ice nucleation proteins. To study the significance of such aromatic-glycine occurrences, a global analysis of all the aromatic octapeptide repeats in the Swiss-Prot and TrEMBL databases was conducted. The search pattern was formulated to compare the number of conjugates of each of the 20 natural amino acids before or after the different aromatic residues. RESULTS: The presence of aromatic-glycine conjugates appears to be significantly higher than aromatic conjugates to any other amino acid. Furthermore, all the six various combination of glycine occurrences before or after the three aromatic residues are present. No such pattern was observed for any other amino acid. The significance of the findings is being discussed in the context of the physicochemical properties of aromatic-glycine conjugates and its possible role in the facilitation of aggregates formation.  相似文献   

5.
MOTIVATION: In recent years, advances have been made in the ability of computational methods to discriminate between homologous and non-homologous proteins in the 'twilight zone' of sequence similarity, where the percent sequence identity is a poor indicator of homology. To make these predictions more valuable to the protein modeler, they must be accompanied by accurate alignments. Pairwise sequence alignments are inferences of orthologous relationships between sequence positions. Evolutionary distance is traditionally modeled using global amino acid substitution matrices. But real differences in the likelihood of substitutions may exist for different structural contexts within proteins, since structural context contributes to the selective pressure. RESULTS: HMMSUM (HMMSTR-based substitution matrices) is a new model for structural context-based amino acid substitution probabilities consisting of a set of 281 matrices, each for a different sequence-structure context. HMMSUM does not require the structure of the protein to be known. Instead, predictions of local structure are made using HMMSTR, a hidden Markov model for local structure. Alignments using the HMMSUM matrices compare favorably to alignments carried out using the BLOSUM matrices or structure-based substitution matrices SDM and HSDM when validated against remote homolog alignments from BAliBASE. HMMSUM has been implemented using local Dynamic Programming and with the Bayesian Adaptive alignment method.  相似文献   

6.
Plants demonstrate various responses when subjected to relatively low concentrations of ethylene gas in the ambient air. The duration of exposure required depends on concentration and varies in different plants and according to stage and manner of growth. Several external factors may also influence the response of intact plants. Besides emissions from industrial installations, ethylene is produced externally from many natural sources and in consequence of human activities. The bulk of evidence suggests that ethylene is not at present a serious pollutant but we suggest that further and more precise research is required.  相似文献   

7.
Characterizing and classifying regularities in protein structure is an important element in uncovering the mechanisms that regulate protein structure, function and evolution. Recent research concentrates on analysis of structural motifs that can be used to describe larger, fold-sized structures based on homologous primary sequences. At the same time, accuracy of secondary protein structure prediction based on multiple sequence alignment drops significantly when low homology (twilight zone) sequences are considered. To this end, this paper addresses a problem of providing an alternative sequences representation that would improve ability to distinguish secondary structures for the twilight zone sequences without using alignment. We consider a novel classification problem, in which, structural motifs, referred to as structural fragments (SFs) are defined as uniform strand, helix and coil fragments. Classification of SFs allows to design novel sequence representations, and to investigate which other factors and prediction algorithms may result in the improved discrimination. Comprehensive experimental results show that statistically significant improvement in classification accuracy can be achieved by: (1) improving sequence representations, and (2) removing possible noise on the terminal residues in the SFs. Combining these two approaches reduces the error rate on average by 15% when compared to classification using standard representation and noisy information on the terminal residues, bringing the classification accuracy to over 70%. Finally, we show that certain prediction algorithms, such as neural networks and boosted decision trees, are superior to other algorithms.This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).  相似文献   

8.
The prediction of 1D structural properties of proteins is an important step toward the prediction of protein structure and function, not only in the ab initio case but also when homology information to known structures is available. Despite this the vast majority of 1D predictors do not incorporate homology information into the prediction process. We develop a novel structural alignment method, SAMD, which we use to build alignments of putative remote homologues that we compress into templates of structural frequency profiles. We use these templates as additional input to ensembles of recursive neural networks, which we specialise for the prediction of query sequences that show only remote homology to any Protein Data Bank structure. We predict four 1D structural properties – secondary structure, relative solvent accessibility, backbone structural motifs, and contact density. Secondary structure prediction accuracy, tested by five‐fold cross‐validation on a large set of proteins allowing less than 25% sequence identity between training and test set and query sequences and templates, exceeds 82%, outperforming its ab initio counterpart, other state‐of‐the‐art secondary structure predictors (Jpred 3 and PSIPRED) and two other systems based on PSI‐BLAST and COMPASS templates. We show that structural information from homologues improves prediction accuracy well beyond the Twilight Zone of sequence similarity, even below 5% sequence identity, for all four structural properties. Significant improvement over the extraction of structural information directly from PDB templates suggests that the combination of sequence and template information is more informative than templates alone. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
Phytoalexin activity of various apple varieties was measured during their storage at subcryoscopic (-2.3 degrees C) and supracryoscopic (-1.3 degrees C) temperatures. More resistant late winter apple varieties Renet Simitrenko and Renet Champagne showed higher phyto-alexin activity than the autumn-winter strain Calville Snowy. By the end of storage the phytoalexin activity decreased independently on the storage conditions. However, the apples that were kepat at supracryoscopic temperature retained a hight phytoalexin activity. The apples which were kept at -2.3 degrees C showed no phytoalexin activity.  相似文献   

11.
12.
13.
14.
15.
We present the first worldwide study on the apple (Malus × domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.  相似文献   

16.
ABCG2 (BCRP/MXR/ABCP) is a half-transporter associated with multidrug resistance that presumably homodimerizes for function. It has a conserved GXXXG motif in its first transmembrane segment, a motif that has been linked with dimerization in other proteins, e.g., glycophorin A. We substituted either or both glycines of this GXXXG motif with leucines to evaluate the impact on drug transport, ATP hydrolysis, cross-linking, and susceptibility to degradation. All mutants also carried the R482G gain-of-function mutation, and all migrated to the cell surface. The mutations resulted in lost transport for rhodamine 123 and impaired mitoxantrone, pheophorbide a, and BODIPY-prazosin transport, particularly in the double leucine mutant (G406L/G410L). Basal ATPase activity of the G406L/G410L mutant was comparable to the empty vector transfected cells with no substrate induction. Despite impaired function, the mutants retained susceptibility to cross-linking using either disuccinimidyl suberate (DSS) or the reducible dithiobis(succinimidyl propionate) (DSP) and demonstrated a high molecular weight complex under nonreducing conditions. Mutations to alanine at the same positions yielded fully functional transporters. Finally, we exposed cells to mitoxantrone to promote folding and processing of the mutant proteins, which in the leucine mutants resulted in increased amounts detected on immunoblot and by immunofluorescence. These studies support a hypothesis that the GXXXG motif promotes proper packing of the transmembrane segments in the functional ABCG2 homodimer, although it does not solely arbitrate dimerization.  相似文献   

17.
Deville J  Rey J  Chabbert M 《Proteins》2008,72(1):115-135
Alpha-helices are the most common secondary structures found in globular proteins. In this report, we analyze the stereochemical and sequence properties of helix-X-helix (HXH) motifs in which two alpha-helices are linked by a single residue, in search of characteristic structures and sequence signals. The analysis is carried out on a database of 837 nonredundant HXH motifs. The kinks are characterized by the bend angle between the axes of the N-terminal and C-terminal helices and the wobble angle corresponding to the rotation of C-terminal helix axis on the plane perpendicular to the N-terminal one. The phi-psi dihedral angles of the linker residue are clustered in six distinct areas of the Ramachandran plot: two areas are located in the additional allowed alpha region (alpha(1) and alpha(2)), two areas are in the additional allowed beta region (beta(1) and beta(2)) and two areas have positive phi values (alpha(L) and beta(M)). Each phi/psi region corresponds to characteristic bend and wobble angles and amino acid distributions. Bend angles can vary from 0 degrees to 160 degrees. Most wobble angles correspond to a counter-clockwise rotation of the C-terminal helix. Proline residues are rigorously excluded from the linker position X but have a high propensity at position X+1 of the beta(1) and beta(2) motifs (12 and 7, respectively) and at position X+3 of the alpha(1) motifs (9). Glycine linkers are located either in the alpha(L) region (20%) or in the beta(M) region (80%). This latter conformation is characterized by a marked bend angle (124 degrees +/- 18 degrees) and a clockwise wobble. Among other amino acids, Asn is remarkable for its high propensity (>3) at the linker position of the alpha(2), beta(1), and beta(2) motifs. Stabilization of HXH motifs by H-bonds between polar side chains of the linker and polar groups of the backbone is determined. A method based on position-specific scoring matrices is developed for conformational prediction. The accuracy of the predictions reaches 80% when the method is applied to proline-induced kinks or to kinks with bend angles in the 50 degrees-100 degrees range.  相似文献   

18.
19.
Microglia: activation and their significance in the central nervous system   总被引:6,自引:0,他引:6  
Microglia are resident monocyte-lineaged cells in the brain. Their characteristic feature is that they react to injury and diseases of the brain and become morphologically and functionally activated. Although some trigger molecules which activate microglia are predicted to be released from injured or affected cells, such molecules have not yet been identified. The main role of activated microglia is believed to be in brain defense, as scavengers of dead cells, and as immune or immunoeffector cells. Recent biochemical and neurobiological studies have further indicated that they significantly affect the pathological state and/or regulate the regenerative state and remodeling of the brain by producing a variety of biologically active molecules including cytotoxic and neurotrophic molecules.  相似文献   

20.
The biosynthesis of the alkaloids of the Rutaceae and its relevance to their systematic value is discussed. The alkaloids are divided into groups of potential systematic significance and their distribution reviewed and analysed with respect to presently accepted taxonomic classifications for the family. It is shown that, from the alkaloid data available, Engler's classification of the major sub-families Rutoideae and Toddalioideae is untenable. An hypothesis for the phylogeny of the Rutales, based on the distribution of alkaloids and other secondary metabolites, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号