首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
The Schizosaccharomyces pombe cells harboring the methionine- R-sulfoxide reductase (MsrB)-overexpressing recombinant plasmid pFMetSO exhibited better growth than vector control cells, when shifted into fresh medium containing cadmium chloride (abbreviated as Cd). Although both groups of cells contained enhanced reactive oxygen species (ROS) and nitric oxide (NO) levels in the presence of Cd, ROS and NO levels were significantly lower in the S. pombe cells harboring pFMetSO than in vector control cells. Conversely, the S. pombe cells harboring pFMetSO possessed higher total glutathione (GSH) levels and a greater reduced/oxidized GSH ratio than vector control cells under the same conditions.  相似文献   

2.
3.
Oxidative stress causes damage to proteins, lipids and nucleic acids, and thereby compromises cell viability. Some of the oxidative stress markers in an eukaryotic model organism, fission yeast Schizosaccharomyces pombe, were evaluated in this study. Intracellular oxidation, protein carbonyls, lipid peroxidation and reduced glutathione (GSH) levels were investigated in H2O2-treated and non-treated control cells. It was observed that increased H2O2 concentration proportionally lowered the cell number and increased the intracellular oxidation, lipid peroxidation and protein carbonyl levels in S. pombe. A dose-dependent decrease in GSH level was also detected. The fission yeast S. pombe is best known for its contribution to understanding of eukaryotic cell cycle control. S. pombe displays a different physiology from Saccharomyces cerevisiae in several ways and is thus probably more closely related to higher eukaryotes. The purpose of this study was to provide some data about the effects of hydrogen peroxide on the proteins and lipids in the fission yeast. The data obtained here is expected to constitute a basis for the further studies on redox balance and related processes in yeast and mammalian cells.  相似文献   

4.
Glutathione is essential for protecting plants from a range of environmental stresses, including heavy metals where it acts as a precursor for the synthesis of phytochelatins. A 1658 bp cDNA clone for glutathione synthetase (gsh2) was isolated fromArabidopsis thaliana plants that were actively synthesizing glutathione upon exposure to cadmium. The sequence of the clone revealed a protein with an estimated molecular mass of 53858 Da that was very similar to the protein from higher eukaryotes, was less similar to the gene from the fission yeast,Schizosaccharomyces pombe, and shared only a small region of similarity with theEscherichia coli protein. A 4.3 kbSstI fragment containing the genomic clone for glutathione synthetase was also isolated and sequenced. A comparison of the cDNA and genomic sequences revealed that the gene was composed of twelve exons.When theArabidopsis cDNA cloned in a special shuttle vector was expressed in aS. pombe mutant deficient in glutathione synthetase activity, the plant cDNA was able to complement the yeast mutation. Glutathione synthetase activity was measurable in wild-type yeast cells, below detectable levels in thegsh2 - mutant, and restored to substantial levels by the expression of theArabidopsis cDNA. TheS. pombe mutant expressing the plant cDNA had near wild type levels of total cellular thiols,109Cd2+ binding activity, and cadmium resistance. Since theArabidopsis cDNA was under control of a thiamine-repressible promoter, growth of the transformed yeast on thiamine-free medium increased expression of the cDNA resulting in increases in cadmium resistance.  相似文献   

5.
The first gene encoding gamma-glutamyl transpeptidase (GGTI) of the fission yeast has previously been characterized, and its expression was found to be regulated by various oxidative stress-inducing agents. In this work, a second gene, encoding GGTII, was cloned and characterized from the fission yeast Schizosaccharomyces pombe. The structural gene encoding GGTII was amplified from the genomic DNA of the fission yeast and ligated into the shuttle vector pRS316 to generate the recombinant plasmid pPHJ02. The determined sequence contains 3040 bp and is able to encode the putative 611 amino acid sequence of GGTII, which resembles the counterparts of Saccharomyces cerevisiae, Homo sapiens, Rattus norvegicus, and Escherichia coli. The DNA sequence also contains 940-bp upstream and 289-bp downstream regions of the GGTII gene. The Schizosaccharomyces pombe cells harboring plasmid pPHJ02 showed about 4-fold higher GGT activity in the exponential phase than the cells harboring the vector only, indicating that the cloned GGTII gene is functional. The S. pombe cells containing the cloned GGTII gene were found to contain higher levels of both intracellular glutathione (GSH) content and GSH uptake. The S. pombe cells harboring plasmid pPHJ02 showed increased survival on solid media containing hydrogen peroxide, diethylmaleate, aluminum chloride, cadmium chloride, or mercuric chloride. The GGTII mRNA level was significantly elevated by treatment with GSH-depleting diethylmaleate. These results imply that the S. pombe GGTII gene produces functional GGTII protein and is involved in the response to oxidative stresses in S. pombe cells.  相似文献   

6.
In the present work, a second gene encoding protein disulfide isomerase (PDI2) was cloned and characterized from Schizosaccharomyces pombe, and its regulation was studied. The structural gene encoding PDI2 was amplified from the genomic DNA using PCR, and ligated into the E. coli-yeast shuttle vector pRS316 to generate the recombinant plasmid pYPDI2. The determined DNA sequence carries 2,578 bp and is able to encode a protein of 726 amino acid sequence with CGAC at the putative active site. The fission yeast cells harboring pYPDI2 contained 1.62- and 2.73-fold higher PDI activity than the control yeast cells in exponential and stationary phases, respectively, indicating that the cloned gene is in vivo functioning. The PDI2 mRNA levels in both vector control and pYPDI2-containing yeast cells were found to be significantly higher in the stationary phase than in the exponential phase, suggesting that expression of the PDI2 gene is under stationary control. The yeast cells harboring pYPDI2 showed enhanced survival on minimal media plates containing nitric oxide (NO)-generating sodium nitroprusside (SNP) and no nitrogen. The synthesis of β-galactosidase from the PDI2-lacZ fusion gene was markedly enhanced in the Pap1-positive KP1 cells by SNP and nitrogen starvation. However, the enhancement in the synthesis of β-galactosidase from the PDI2-lacZ fusion gene by SNP and nitrogen starvation appeared to be relatively reduced in the Pap1-negative TP108-3C cells than in the Pap1-positive KP1 cells. The PDI2 mRNA level was elevated by SNP and nitrogen starvation in the Pap1-positive cells but not in the Pap1-negative cells. In brief, the S. pombe PDI2 plays a protective role against nitrosative and nutritional stresses, and is positively regulated by NO and nitrogen starvation in a Pap1-dependent manner.  相似文献   

7.
Strains of the fission yeast Schizosaccharomyces pombe have been constructed containing single or multiple chromosomally integrated copies of an expression cassette for production of human gastric lipase. Integrant strains of S. pombe secrete active lipase and are stable for lipase production over a minimum of 50 generations in non-selective media. Lipase activity levels for integrant strains containing up to three tandem copies of the expression cassette are strongly correlated with copy number of the cassette in both complete and minimal media. Lipase activity is higher in complete medium than in minimal medium. Strains carrying three chromosomally integrated expression cassette copies can be grown without selection in complete medium and are capable of significantly higher lipase activities than strains containing the expression cassette on a multicopy plasmid. Received: 27 March 1997 / Received revision: 13 August 1997 / Accepted: 25 August 1997  相似文献   

8.
To elucidate the physiological roles and regulation of a protein disulfide isomerase (PDI) from the fission yeast Schizosaccharomyces pombe, the full-length PDI gene was ligated into the shuttle vector pRS316, resulting in pPDI10. The determined DNA sequence carries 1,636 bp and encodes the putative 359 amino acid sequence of PDI with a molecular mass of 39,490 Da. In the amino acid sequence, the S. pombe PDI appears to be very homologous to A. thaliana PDI. The S. pombe cells harboring pPDI10 showed increased PDI activity and accelerated growth, suggesting that the cloned PDI gene is functioning and involved in the yeast growth. The 460 bp upstream region of the PDI gene was fused into promoterless β-galactosidase gene of the shuttle vector YEp367R to generate pYUPDI10. The synthesis of β-galactosidase from the PDI–lacZ fusion gene was enhanced by oxidative stress, such as superoxide anion and hydrogen peroxide. It was also induced by some non-fermentable and fermentable carbon sources. Nitrogen starvation was able to enhance the synthesis of β-galactosidase from the PDI–lacZ fusion gene. The enhancement by oxidative stress and fermentable carbon sources did not depend on the presence of Pap1. The PDI mRNA levels were increased in both Pap1-positive and Pap1-negative cells treated with glycerol. Taken together, the S. pombe PDI gene is involved in cellular growth and response to nutritional and oxidative stress.  相似文献   

9.
Transposon mutagenesis allows for the discovery and characterization of genes by creating mutations that can be easily mapped and sequenced. Moreover, this method allows for a relatively unbiased approach to isolating genes of interest. Recently, a system of transposon based mutagenesis for Schizosaccharomyces pombe became available. This mutagenesis relies on Hermes, a DNA transposon from the house fly that readily integrates into the chromosomes of S. pombe. The Hermes system is distinct from the retrotransposons of S. pombe because it efficiently integrates into open reading frames. To mutagenize S. pombe, cells are transformed with a plasmid that contains a drug resistance marker flanked by the terminal inverted repeats of Hermes. The Hermes transposase expressed from a second plasmid excises the resistance marker with the inverted repeats and inserts this DNA into chromosomal sites. After S. pombe with these two plasmids grow 25 generations, approximately 2% of the cells contain insertions. Of the cells with insertions, 68% contain single integration events. The protocols listed here provide the detailed information necessary to mutagenize a strain of interest, screen for specific phenotypes, and sequence the positions of insertion.  相似文献   

10.
Schizosaccharomyces pombe yeast cells grown on either fermentable or respiratory media were efficiently converted to stable spheroplasts by the -(1 3)-glucanase Novozym 234 in the presence of 1.2M sorbitol. Lysis of spheroplasts by gentle homogenization in dilute sorbitol resulted in the preparation of mitochondria with a structure similar to that observed within the starting yeast cells. The isolated mitochondria exhibited high oxidation rates with various respiratory substrates, NADH being the most efficient. The mitochondria appeared well coupled since the second State 4 rate observed after ADP consumption was identical to the initial one. The State 3 rate in the presence of ADP was completely inhibited by low oligomycin concentrations, similarly to the concomitant ATP synthesis of 900 nmol/min × mg protein. These NADH oxidation and dependent ATP-synthesis activities are much higher than those previously described for mitochondria isolated fromSchizosaccharomyces pombe, and similar to the highest values reported forSaccharomyces cerevisiae.  相似文献   

11.
In this study, the effects of inositol addition on expression of the MAL gene encoding maltase and phosphatidylinositol (PI) biosynthesis in Schizosaccharomyces pombe (a naturally inositol-requiring strain) were examined. We found that specific maltase activity was at its maximum when the concentration of added inositol reached 6 μg ml−1 in a synthetic medium containing 2.0% (w/v) glucose. When the concentration of added inositol was 1 μg ml−1 in the medium, repression of MAL gene expression occurred at glucose concentration higher than 0.2% (w/v). However, when S. pombe was cultured in the synthetic medium containing 6 μg ml−1, repression of maltase gene expression occurred only at initial glucose concentration above 1.0% (w/v). More mRNA encoding maltase was detected in the cells grown in the medium with 6 μg ml−1 inositol than in those grown in the same medium with 1 μg ml−1 inositol. These results demonstrate that higher inositol concentrations in the synthetic medium could derepress MAL gene expression in S. pombe. PI content of the yeast cells grown in the synthetic medium with 6 μg ml−1 of inositol was higher than that of the yeast cells grown in the same medium with 1 μg ml−1 of inositol. This means that PI may be involved in the derepression of MAL gene expression in S. pombe.  相似文献   

12.
The bop gene codes for the membrane protein bacterio-opsin (BO), which on binding all-trans-retinal, constitutes the light-driven proton pump bacteriorhodopsin (BR) in the archaebacterium Halobacterium salinarium . This gene was cloned in a yeast multi-copy vector and expressed in Saccharomyces cerevisiae under the control of the constitutive ADH1 promoter. Both the authentic gene and a modified form lacking the precursor sequence were expressed in yeast. Both proteins are incorporated into the membrane in S. cerevisiae. The presequence is thus not required for membrane targeting and insertion of the archaebacterial protein in budding yeast, or in the fission yeast Schizosaccharomyces pombe, as has been shown previously. However, in contrast to S. pombe transformants, which take on a reddish colour when all-trans-retinal is added to the culture medium as a result of the in vivo regeneration of the pigment, S. cerevisiae cells expressing BO do not take on a red colour. The precursor of BO is processed to a protein identical in size to the mature BO found in the purple membrane of Halobacterium. The efficiency of processing in S. cerevisiae is dependent on growth phase, as well as on the composition of the medium and on the strain used. The efficiency of processing of BR is reduced in S. pombe and in a retinal-deficient strain of H. salinarium, when retinal is present in the medium.
  相似文献   

13.
The fission yeast cells that contained the cloned glutathione synthetase (GS) gene showed 1.4-fold higher glutathione (GSH) content and 1.9-fold higher GS activity than the cells without the cloned GS gene. Interestingly, gamma-glutamylcysteine synthetase activity increased 2.1-fold in the S. pombe cells that contained the cloned GS gene. The S. pombe cells that harbored the multicopy-number plasmid pRGS49 (containing the cloned GS gene) showed a higher level of survival on solid media with cadmium chloride (1 mM) or mercuric chloride (10 microM) than the cells that harbored the YEp357R vector. The 506 bp upstream sequence from the translational initiation point and N-terminal 8 amino acid-coding region were fused into the promoterless beta-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pUGS39. Synthesis of beta-galactosidase from the fusion plasmid pUGS39 was significantly enhanced by cadmium chloride and NO-generating S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SN). It was also induced by L-buthionine-(S,R)-sulfoximine, a specific inhibitor of gamma-glutamylcysteine synthetase (GCS). We also found that the expression of the S. pombe GS gene is regulated by the Atf1-Spc1-Wis1 signal pathway.  相似文献   

14.
Microcystins, one type of the cyanobacterial toxins, show a broad range of hazardous effects on other organisms. Most of the researches on the toxic effects of microcystins have involved in animals and higher plants. Little work, however, has been done on evaluating the mechanisms of microcystin toxicity on algae. In this study, the toxicological effects of microcystin-RR (MC-RR) on the cyanobacterium Synechococcus elongatus were investigated. For this purpose, six physio-biochemical parameters (cell optical density, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST)) were tested in algal cells when exposed to 100 g–1 microcystin-RR. The results showed that the growth of Synechococcus elongatus (expressed as optical density) was significantly inhibited compared with the control. At the same time, the treated algae exhibited a pronounced increase in production of ROS and MDA after 6 days exposure to microcystin-RR. Significant changes in GSH levels and GSH-Px, GSH activities were also detected in algal cells, with higher values being observed in the toxin treated algae after 6 days exposure. GST activities in the treated algae exhibited a decline after exposure and rapid augmentation on day 3, thereafter, they kept at a high level when compared to the control group. GSH contents and GSH-Px activities were also significantly raised in the toxin-treated algae cells from day 3, but they showed a sharp decrease on day 4, which was the onward of cell proliferation. These results suggested that oxidative stress manifested by elevated ROS levels and MDA contents might be responsible for the toxicity of microcystin to Synechococcus elongatus and the algal cells could improve their antioxidant ability through the enhancement of enzymatic and non-enzymatic preventive substances.  相似文献   

15.
We have succeeded to produce a high content of ricinoleic acid (RA), a hydroxylated fatty acid with great values as a petrochemical replacement, in fission yeast Schizosaccharomyces pombe by introducing Claviceps purpurea oleate Δ12-hydroxylase gene (CpFAH12). Although the production was toxic to S. pombe cells, we solved the problem by identifying plg7, encoding phospholipase A2, as a multicopy suppressor. Characterization of the RA-tolerant strains suggested that the removal of RA moieties from phospholipids would be the suppression mechanism by plg7. In this study, we extended our analysis and report our new discovery that the overexpression of plg7 enabled cells to secrete free RA into culture media. When the FAH12 integrant in the absence of the overexpressed plg7 was grown at 20 °C for 11 days, the amount of intracellular RA reached 200.1 μg/ml of culture and only 69.3 μg/ml of RA was detected in culture media. On the other hand, the FAH12 integrant harboring the plg7 multicopy plasmid secreted RA in the media (184.5 μg/ml) without decreasing the amount in the cells, i.e., a significantly higher total secretion and a lead to making RA by its secretory production in S. pombe.  相似文献   

16.
The subcellular localization of the enzyme invertase in Schizosaccharomyces pombe cells, both repressed and derepressed for synthesis of the enzyme, was studied. Most of the invertase was found to be located outside the plasma membrane and only a small percentage was found to be associated to membranes. A substantial portion of the external enzyme remained firmly bound to cell-wall material.All of the invertase recovered in soluble form from cellular extracts reacted with concanavalin A and with the lectin from Bandeiraea simplicifolia seeds, indicating the presence in the enzyme of a carbohydrate moiety which probably contains terminal mannosyl (or structurally related) and galactosyl residues.The possibility of the presence of two different forms of invertase in S. pombe was considered. An intracellular, soluble form of invertase, devoid of carbohydrate, similar to the small invertase of the budding yeast Saccharomyces cerevisiae, was not found in S. pombe. However, the Michaelis constant for sucrose of the enzyme present in repressed cells was smaller than that of the invertase synthesized under derepressing conditions, although this difference could also be the result of a different pattern of glycosylation of the invertase synthesized under different growth conditions.  相似文献   

17.
The budding yeast Saccharomyces cerevisiae is able to utilize glycerol as the sole carbon source via two pathways (glycerol 3-phosphate pathway and dihydroxyacetone [DHA] pathway). In contrast, the fission yeast Schizosaccharomyces pombe does not grow on media containing glycerol as the sole carbon source. However, in the presence of other carbon sources such as galactose and ethanol, S. pombe could assimilate glycerol and glycerol was preferentially utilized over ethanol and galactose. No equivalent of S. cerevisiae Gcy1/glycerol dehydrogenase has been identified in S. pombe. However, we identified a gene in S. pombe, SPAC13F5.03c (gld1 +), that is homologous to bacterial glycerol dehydrogenase. Deletion of gld1 caused a reduction in glycerol dehydrogenase activity and prevented glycerol assimilation. The gld1Δ cells grew on 50 mM DHA as the sole carbon source, indicating that the glycerol dehydrogenase encoded by gld1 + is essential for glycerol assimilation in S. pombe. Strains of S. pombe deleted for dak1 + and dak2 + encoding DHA kinases could not grow on glycerol and showed sensitivity to a higher concentration of DHA. The dak1Δ strain showed a more severe reduction of growth on glycerol and DHA than the dak2Δ strain because the expression of dak1 + mRNA was higher than that of dak2 +. In wild-type S. pombe, expression of the gld1 +, dak1 +, and dak2 + genes was repressed at a high concentration of glucose and was derepressed during glucose starvation. We found that gld1 + was regulated by glucose repression and that it was derepressed in scr1Δ and tup12Δ strains.  相似文献   

18.
Recombinant tilapia (Oreochromis mossambicus) fish metallothionein (MT) was used as a surface biosorbent for mercury removal in Escherichia coli. Fish MT conferred better resistance than did mouse or human MT. When tilapia MT (tMT) was fused with an outer-membrane protein, outer membrane protein C (OmpC), the membrane-targeted fusion protein, OmpC–tMT, gave enhanced resistance compared with cytoplasmic tMT expressed in the same host cell. The cytoplasmically expressed tMT showed high mercury adsorption (4.3 ± 0.4 mg/g cell dry weight). The cell surface that expressed E. coli showed about 25% higher adsorption ability (5.6 ± 0.4 mg/g) than the cells expressing cytoplasmic MT, attaining almost twice the level of adsorption of the control plasmid (3.0 ± 0.4 mg/g). As MTs are also known for their ability to scavenge hydroxyl-free radicals, it was also shown that tMT exhibited better radical-scavenging activities than glutathione. These results suggest that fish MT has potential for the development of a bioremediation system for mercury removal that protects the harboring E. coli host by free-radical scavenging.  相似文献   

19.
The incorporation of exogenously supplied fatty acids, palmitic acid, palmitoleic acid, oleic acid and linoleic acid, was examined in the yeast Schizosaccharomyces pombe at two growth temperatures, 20 °C and 30 °C. Fatty acids supplied to S. pombe in the growth medium were found to be preferentially incorporated into the cells, becoming a dominant species. The relative increase in exogenous fatty acids in cells came at the expense of endogenous oleic acid as a proportion of total fatty acids. Lowering the temperature at which the yeast were grown resulted in decreased levels of incorporation of the fatty acids palmitic acid, palmitoleic acid and linoleic acid compared to cells supplemented at 30 °C. In addition, the relative amount of the endogenously produced unsaturated fatty acid oleic acid, while greatly reduced compared to unsupplemented cells, was increased in cells supplemented with fatty acids at 20 °C compared to supplemented cells at 30 °C. The differential production of oleic acid in S. pombe cells indicates that regulation of unsaturated fatty acid levels, possibly by control of the stearoyl-CoA desaturase, is an important control point in membrane composition in response to temperature and diet in this species.  相似文献   

20.
Intracellular cadmium (Cd2+) ion accumulation and the ability to produce specific Cd2+ ion chelators was studied in the methylotrophic yeast Hansenula polymorpha. Only one type of Cd2+ intracellular chelators, glutathione (GSH), was identified, which suggests that sequestration of this heavy metal in H. polymorpha occurs similarly to that found in Saccharomyces cerevisiae, but different to Schizosaccharomys pombe and Candida glabrata which both synthesize phytochelatins. Cd2+ ion uptake in the H. polymorpha wild-type strains appeared to be an energy dependent process. It was found that Δgsh2 mutants, impaired in the first step of GSH biosynthesis, are characterized by increase in net Cd2+ ion uptake by the cells, whereas Δgsh1met1 and Δggt1 mutants impaired in sulfate assimilation and GSH catabolism, respectively, lost the ability to accumulate Cd2+ intracellularly. Apparently H. polymorpha, similarly to S. cerevisiae, forms a Cd-GSH complex in the cytoplasm, which in turn regulates Cd2+ uptake. Genes GSH1/MET1 and GGT1 are involved in maturation and metabolism of cellular Cd-GSH complex, respectively. Transport of [3H]N-ethylmaleimide-S-glutathione ([3H]NEM-SG) conjugate into crude membrane vesicules, purified from the wild-type cells of H. polymorpha appeared to be MgATP dependent, uncoupler insensitive and vanadate sensitive. We suggest that MgATP dependent transporter involved in Cd-GSH uptake in H. polymorpha, is similar to S. cerevisiae Ycf1-mediated vacuolar transporter responsible for accumulation of organic GS-conjugates and Cd-GSH complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号