首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Upon fertilization, ascidian eggs release a cell surface glycosidase used in the block to polyspermy and undergo cortical contractions resulting from increased intracellular calcium levels. The glycosidase is released by fertilization, calcium ionophores or added phospholipase C (PLC) activity. The PLC inhibitor D609 blocks glycosidase release. Intact Ascidia ceratodes eggs cleave 4-methylumbelliferyl-phospho-choline when it is added to seawater. This yields highly fluorescent 4-methylumbelliferone. Authentic phospholipase C but not phospholipase D can cleave this substrate. Thus, the authors believe that cleavage of the substrate is specific for PLC activity. Eggs incubated in the fluorogenic substrate after having been washed and detergent extracted were not fluorescent. Therefore the substrate failed to enter intact cells. Glycosidase release and PLC activity were stimulated by ionomycin. Octylglucoside or Triton X-100 extracts of ascidian eggs had two forms of phospholipase activity as shown by ion affinity chromatography: PL1 eluting at 0.25 mol/L NaCl and PL2 eluting at 0.6mol/L NaCl. The PL1 appeared to be isolated as a single protein. When surface proteins were labeled with non-penetrating biotin and were subsequently reacted with streptavidin, half of the PLC activity bound. This demonstrates that half the ascidian egg PLC activity is located on the surface of either the egg or follicle cell, and half is located within the egg.  相似文献   

2.
Extensive cell movements accompany formation of the otic placode   总被引:11,自引:0,他引:11  
A centrally important factor in initiating egg activation at fertilization is a rise in free Ca(2+) in the egg cytosol. In echinoderm, ascidian, and vertebrate eggs, the Ca(2+) rise occurs as a result of inositol trisphosphate-mediated release of Ca(2+) from the endoplasmic reticulum. The release of Ca(2+) at fertilization in echinoderm and ascidian eggs requires SH2 domain-mediated activation of a Src family kinase (SFK) and phospholipase C (PLC)gamma. Though some evidence indicates that a SFK and PLC may also function at fertilization in vertebrate eggs, SH2 domain-mediated activation of PLC gamma appears not to be required. Much work has focused on identifying factors from sperm that initiate egg activation at fertilization, either as a result of sperm-egg contact or sperm-egg fusion. Current evidence from studies of ascidian and mammalian fertilization favors a fusion-mediated mechanism; this is supported by experiments indicating that injection of sperm extracts into eggs causes Ca(2+) release by the same pathway as fertilization.  相似文献   

3.
Fertilization channels in ascidian eggs are not activated by Ca   总被引:1,自引:0,他引:1  
Using the whole-cell voltage clamp technique, experiments were carried out on ascidian eggs to determine the role of intracellular Ca in the gating of fertilization channels. Raising the level of Ca by adding Ca to the intracellular perfusion medium or by loading the egg cortex (greater than 50 microM) with Ca through voltage gated channels did not lead to the activation of fertilization channels. Alternatively, eggs exposed to low-Ca seawater, perfused with the chelator K-EGTA or Ca channel blocking agents to prevent the release of Ca from intracellular organelles, and subsequently inseminated generated fertilization currents. This argues against Ca as a second messenger in the activation of fertilization channels in the ascidian egg and alternative mechanisms are discussed.  相似文献   

4.
The egg of ascidians (urochordate), as virtually all animal and plant species, displays Ca2+ signals upon fertilisation. These Ca2+ signals are repetitive Ca2+ waves that initiate in the cortex of the egg and spread through the whole egg interior. Two series of Ca2+ waves triggered from two distinct Ca2+ wave pacemakers entrain the two meiotic divisions preceding entry into the first interphase. The second messenger inositol (1,4,5) trisphosphate (IP3) is the main mediator of these global Ca2+ waves. Other Ca2+ signalling pathways (RyR and NAADPR) are functional in the egg but they mediate localised cortical Ca2+ signals whose physiological significance remains unclear. The meiosis I Ca2+ wave pacemaker is mobile and relies on intracellular Ca2+ release from the endoplasmic reticulum (ER) induced by a large production of IP3 at the sperm aster site. The meiosis II Ca2+ wave pacemaker is stably localised in a vegetal protrusion called the contraction pole. It is probable that a local production of IP3 in the contraction pole determines the site of this second pacemaker while functional interactions between ER and mitochondria regulate its activity. Finally, a third ectopic pacemaker can be induced by a global increase in IP3, making the ascidian egg a unique system where three different Ca2+ wave pacemakers coexist in the same cell.  相似文献   

5.
We have studied the ability of fertilized eggs of Ilyanassa obsoleta to undergo polar lobe formation and cytokinesis in the presence of Ca2+ antagonists (Ca2+ channel blockers, Ca2+ uptake inhibitors). Earlier work had suggested little need for exogenous Ca2+ during these cellular shape changes. Again it appears that exogenous Ca2+ probably is not required, based on cell ability to undergo the shape changes with no, or only minor, delay in the presence of 50 mM La3+ at pH 6.5, 10 mM concentrations of Ni2+ or Co2+, 1 mM Cd2+, and 100 microM concentrations of Mn2+, papaverine, verapamil, D600, or diltiazem. In nominally Ca2+-free seawater (containing approximately 10 microM Ca2+) (CFSW), there still is no effect of Cd2+ (up to 100 microM), Ni2+, Co2+, Mn2+, or diltiazem; however, papaverine, verapamil, and D600 in CFSW cause longer delays in the shape changes than they do in the presence of normal levels of Ca2+ (SW). In 10-50 microM nifedipine, shape changes are progressively delayed to the same extent in both SW and CFSW, but more so in CFSW at concentrations above 50 microM nifedipine. Among calmodulin antagonists, trifluoperazine up to 100 microM was without effect, but chlorpromazine at 25-100 microM and calmidazolium at 50-100 microM caused substantial, concentration-dependent delays in the starting times for the shape changes. Methylxanthines caused a substantial speed-up in the starting times for both polar lobe formation and cytokinesis. The most effective of these, caffeine, at optimal concentrations of 0.7-10 mM in SW or CFSW caused shape changes to occur 12-15 min earlier than in controls undergoing a normal 50-min cycle. Caffeine is known to cause release of Ca2+ from muscle sarcoplasmic reticulum. A putative antagonist of intracellular Ca2+ mobilization, TMB-8, significantly inhibited the shape changes of the Ilyanassa cells, whereas a variety of inhibitors of exogenous Ca2+ uptake noted above did not inhibit. We conclude that Ca2+ may be necessary for polar lobe formation and cytokinesis in Ilyanassa cells, but that it may be released from intracellular, sequestered stores rather than derived from exogenous sources.  相似文献   

6.
Cell activation during fertilization of the egg of Xenopus laevis is accompanied by various metabolic changes, including a permanent increase in intracellular pH (pHi) and a transient increase in intracellular free calcium activity ([Ca2+]i). Recently, it has been proposed that protein kinase C (PKC) is an integral component of the Xenopus fertilization pathway (Bement and Capco, J. Cell Biol. 108, 885-892, 1989). Indeed, activators of PKC trigger cortical granule exocytosis and cortical contraction, two events of egg activation, without, however, releasing the cell cycle arrest (blocked in second metaphase of meiosis). In the egg of Xenopus, exocytosis as well as cell cycle reinitiation are supposed to be triggered by the intracellular Ca2+ transient. We report here that PKC activators do not induce the intracellular Ca2+ transient, or the activation-associated increase in pHi. These results suggest that the ionic responses to egg activation in Xenopus do not appear to depend on the activation of PKC. In addition, in eggs already pretreated with phorbol esters, those artificial activators that act by releasing Ca2+ intracellularly, triggered a diminished increase in pHi. Finally, sphingosine and staurosporine, two potent inhibitors of PKC, were found to trigger egg activation, suggesting that a decrease in PKC activity might be an essential event in the release of the metaphase block, in agreement with recent findings on the release of the prophase block in Xenopus oocytes (Varnold and Smith, Development 109, 597-604, 1990).  相似文献   

7.
At fertilization in sea urchin, the free radical nitric oxide (NO) has recently been suggested to cause the intracellular Ca(2+) rise responsible for egg activation. The authors suggested that NO could be a universal activator of eggs and the present study was set up to test this hypothesis. Intracellular NO and Ca(2+) levels were monitored simultaneously in eggs of the mouse or the urochordate ascidian Ascidiella aspersa. Eggs were either fertilized or sperm extracts microinjected. Sperm-induced Ca(2+) rises were not associated with any global, or local, change in intracellular NO, although we were able to detect NO produced by the addition of a NO donor. Furthermore, the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester had no effect on sperm-induced Ca(2+) release but did block completely ionomycin-induced NO synthase activation. Therefore, we suggest that the current data provide evidence that NO has no role in the fertilization of these two chordate eggs.  相似文献   

8.
Most mature ascidian oocytes undergo germinal vesicle breakdown (GVBD) when released by the ovary into sea water (SW). Acidic SW blocks this but they can be stimulated by raising the pH, increasing intracellular cAMP levels by cell permeant forms, inhibiting its breakdown or causing synthesis. Boltenia villosa oocytes undergo GVBD in response to these drugs. However, the cAMP receptor protein kinase A (PKA) does not appear to be involved, as oocytes are not affected by the kinase inhibitor H-89. Also, the PKA independent Epac agonist 8CPT-2Me-cAMP stimulates GVBD in acidic SW. GVBD is inhibited in calcium free sea water (CaFSW). The intracellular calcium chelator BAPTA-AM blocks GVBD at 10?μM. GVBD is also inhibited when the ryanodine receptors (RYR) are blocked by tetracaine or ruthenium red but not by the IP(3) inhibitor D-609. However, dimethylbenzanthracene (DMBA), a protein kinase activator, stimulates GVBD in BAPTA, tetracaine or ruthenium red blocked oocytes. The calmodulin kinase inhibitor KN-93 blocks GVBD at 10?μM. This and preceding papers support the hypothesis that the maturation inducing substance (MIS) produced by the follicle cells in response to increased pH causes activation of a G protein which triggers cAMP synthesis. The cAMP then activates an Epac molecule, which causes an increase in intracellular calcium from the endoplasmic reticulum ryanodine receptor. The increased intracellular calcium subsequently activates calmodulin kinase, which causes an increase in cdc25 phosphatase activity, activating MPF and the progression of the oocyte into meiosis.  相似文献   

9.
At fertilisation of mammalian and ascidian eggs the sperm induces a series of Ca2+ oscillations. These Ca2+ oscillations are triggered by a sperm-borne Ca2+-releasing factor whose identity is still unresolved. In both mammals and ascidians Ca2+ oscillations in eggs are associated with the period leading up to exit from meiosis and entry into the first embryonic cell cycle. Thus, in mammals Ca2+ oscillations continue for several hours but are complete by within 30 min in the ascidian. In mammals and ascidians Ca2+ oscillations stop at around the time when pronuclei form in the 1-cell embryo. There is evidence to show that cell cycle factors are important in regulating the fertilisation Ca2+ signal. If the formation of pronuclei is blocked either in mammals (by spindle disruption) or in ascidians (by clamping maturation promoting factor levels high) then Ca2+ oscillations continue indefinitely. Here, we explore the nature of the sperm Ca2+-releasing factor and examine the relationship between cell cycle resumption and the control of Ca2+ oscillations at fertilisation.  相似文献   

10.
Injection of eggs of various species with an extract of sperm cytoplasm stimulates intracellular Ca(2+) release that is spatially and temporally like that occurring at fertilization, suggesting that Ca(2+) release at fertilization may be initiated by a soluble factor from the sperm. Here we investigate whether the signalling pathway that leads to Ca(2+) release in response to sperm extract injection requires the same signal transduction molecules as are required at fertilization. Eggs of the ascidian Ciona intestinalis were injected with the Src-homology 2 domains of phospholipase C gamma or of the Src family kinase Fyn (which act as specific dominant negative inhibitors of the activation of these enzymes), and the effects on Ca(2+) release at fertilization or in response to injection of a sperm extract were compared. Our findings indicate that both fertilization and sperm extract injection initiate Ca(2+) release by a pathway requiring phospholipase C gamma and a Src family kinase. These results support the hypothesis that, in ascidians, a soluble factor from the sperm cytoplasm initiates Ca(2+) release at fertilization, and indicate that the activating factor from the sperm may be a regulator, directly or indirectly, of a Src family kinase in the egg.  相似文献   

11.
The organization of endoplasmic reticulum (ER) was examined in mouse eggs undergoing fertilization and in embryos during the first cell cycle. The ER in meiosis II (MII)-arrested mouse eggs is characterized by accumulations (clusters) that are restricted to the cortex of the vegetal hemisphere of the egg. Monitoring ER structure with DiI18 after egg activation has demonstrated that ER clusters disappear at the completion of meiosis II. The ER clusters can be maintained by inhibiting the decrease in cdk1-cyclin B activity by using the proteasome inhibitor MG132, or by microinjecting excess cyclin B. A role for cdk1-cyclin B in ER organization is further suggested by the finding that the cdk inhibitor roscovitine causes the loss of ER clusters in MII eggs. Cortical clusters are specific to meiosis as they do not return in the first mitotic division; rather, the ER aggregates around the mitotic spindle. Inositol 1,4,5-trisphosphate-induced Ca(2+) release is also regulated in a cell cycle-dependent manner where it is increased in MII and in the first mitosis. The cell cycle dependent effects on ER structure and inositol 1,4,5-trisphosphate-induced Ca(2+) release have implications for understanding meiotic and mitotic control of ER structure and inheritance, and of the mechanisms regulating mitotic Ca(2+) signaling.  相似文献   

12.
To investigate whether or not causal relationship exists between the increase in intracellular Ca2+ and other cortical reactions at fertilization in the medaka, Oryzias latipes , intracellular Ca2+ was determined from luminescence of aequorin previously microinjected into cortical cytoplasm in acetone-treated eggs, when they were inseminated or activated by microinjection of Ca2+. Neither an increase in cytoplasmic calcium nor exocytosis of cortical alveoli occurred in eggs treated with acetone, though other events of fertilization i.e. completion of meiosis, fusion of pronuclei, and accumulation of cortical cytoplasm with intact cortical alveoli in the animal pole region were observed in normal time sequence in these eggs. When denuded eggs were treated with acetone, contraction of the egg and slow resumption of meiosis (extrusion of polar body) were observed without insemination. When denuded eggs were inseminated immediately after acetone-treatment, the number of spermatozoa that penetrated into the egg was greater in the animal hemisphere than in the vegetal hemisphere. These results may indicate that acetone inactivates the egg plasma membrane or its adjacent cortical cytoplasm so that it cannot participate in a propagative increase in intracellular Ca2+ and exocytosis, while it also induces cytoplasmic activation leading to egg contraction, resumption of meiosis and formation of pronuclei. The present results suggest that sperm penetration, resumption of meiosis and ooplasmic segregation are regulated separately from the release of intracellular Ca2+ and exocytosis.  相似文献   

13.
We have used confocal microscopy to measure calcium waves and examine the distribution of tubulin in oocytes of the ascidian Ciona intestinalis during meiosis. We show that the fertilisation calcium wave in these oocytes originates in the vegetal pole. The sperm penetration site and female meiotic apparatus are found at opposite poles of the oocyte at fertilisation, confirming that C. intestinalis sperm enter in the vegetal pole of the oocyte. Following fertilisation, ascidian oocytes are characterised by repetitive calcium waves. Meiosis I-associated waves originate at the vegetal pole of the oocyte, and travel towards the animal pole. In contrast, the calcium waves during meiosis II initiate at the oocyte equator, and cross the oocyte cytoplasm perpendicular to the point of emission of the polar body. Immunolocalisation of tubulin during meiosis II reveals that the male centrosome is also located between animal and vegetal poles prior to initiation of the meiosis II-associated calcium waves, suggesting that the male centrosome influences the origin of these calcium transients. Ascidians are also characterised by an increase in sensitivity to intracellular calcium release after fertilisation. We show that this is not simply an effect of oocyte activation. The data strongly suggest a role for the male centrosome in controlling the mechanism and localisation of post-fertilisation intracellular calcium waves.  相似文献   

14.
At the time of fertilization, an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) underlies egg activation and initiation of development in all species studied to date. The inositol 1,4,5-trisphosphate receptor (IP(3)R1), which is mostly located in the endoplasmic reticulum (ER) mediates the majority of this Ca(2+) release. The sensitivity of IP(3)R1, that is, its Ca(2+) releasing capability, is increased during oocyte maturation so that the optimum [Ca(2+)](i) response concurs with fertilization, which in mammals occurs at metaphase of second meiosis. Multiple IP(3)R1 modifications affect its sensitivity, including phosphorylation, sub-cellular localization, and ER Ca(2+) concentration ([Ca(2+)](ER)). Here, we evaluated using mouse oocytes how each of these factors affected IP(3)R1 sensitivity. The capacity for IP(3)-induced Ca(2+) release markedly increased at the germinal vesicle breakdown stage, although oocytes only acquire the ability to initiate fertilization-like oscillations at later stages of maturation. The increase in IP(3)R1 sensitivity was underpinned by an increase in [Ca(2+)](ER) and receptor phosphorylation(s) but not by changes in IP(3)R1 cellular distribution, as inhibition of the former factors reduced Ca(2+) release, whereas inhibition of the latter had no impact. Therefore, the results suggest that the regulation of [Ca(2+)](ER) and IP(3)R1 phosphorylation during maturation enhance IP(3)R1 sensitivity rendering oocytes competent to initiate oscillations at the expected time of fertilization. The temporal discrepancy between the initiation of changes in IP(3)R1 sensitivity and acquisition of mature oscillatory capacity suggest that other mechanisms that regulate Ca(2+) homeostasis also shape the pattern of oscillations in mammalian eggs.  相似文献   

15.
During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus-free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold.  相似文献   

16.
Transit into interphase of the first mitotic cell cycle in amphibian eggs is a process referred to as activation and is accompanied by an increase in intracellular free calcium [( Ca2+]i), which may be transduced into cytoplasmic events characteristic of interphase by protein kinase C (PKC). To investigate the respective roles of [Ca2+]i and PKC in Xenopus laevis egg activation, the calcium signal was blocked by microinjection of the calcium chelator BAPTA, or the activity of PKC was blocked by PKC inhibitors sphingosine or H7. Eggs were then challenged for activation by treatment with either calcium ionophore A23187 or the PKC activator PMA. BAPTA prevented cortical contraction, cortical granule exocytosis, and cleavage furrow formation in eggs challenged with A23187 but not with PMA. In contrast, sphingosine and H7 inhibited cortical granule exocytosis, cortical contraction, and cleavage furrow formation in eggs challenged with either A23187 or PMA. Measurement of egg [Ca2+]i with calcium-sensitive electrodes demonstrated that PMA treatment does not increase egg [Ca2+]i in BAPTA-injected eggs. Further, PMA does not increase [Ca2+]i in eggs that have not been injected with BAPTA. These results show that PKC acts downstream of the [Ca2+]i increase to induce cytoplasmic events of the first Xenopus mitotic cell cycle.  相似文献   

17.
In this report, unpublished and recent findings concerning the structure and function of the ascidian egg coat are compiled in context with fertilization. In the initial stage of ascidian fertilization, sperm interact with a complex egg investment that consists of a layer of follicle cells attached to an acellular vitelline coat. Increasing evidence exists that ascidian sperm are activated at their encounter with the follicle cells. The molecular basis of sperm-follicle cell interactions is discussed in context with sperm binding, membrane proteins and sperm bound glycosidase. The model that suggests a block to polyspermy established by glycosidase released from the follicle cells on fertilization is evaluated and compared with assured facts. Although a number of questions remain to be answered, our recent findings that a cloned beta-hexosaminidase from P. mammillata binds exclusively to the follicle cells of unfertilized but not fertilized eggs, indicates that the follicle cells participate in the block to polyspermy. A dual function, mediating sperm activation and a block to polyspermy attributes to the ascidian follicle cells a key position in fertilization.  相似文献   

18.
Xenopus laevis eggs pricked or microinjected with water or saline in medium containing a limited quantity of free Ca (1.0 to 2.0 microM) remain unactivated for at least 6 hr, even after transfer to oocyte medium containing Ca at higher concentrations (0.5-1.0 mM). These injected eggs, when later pricked in oocyte medium or exposed to A23187 or urethane are fully capable of activation. This confirms the observations of Wangh ('89). However, eggs injected in this Ca-limited medium (CaLM) with 6-DMAP as well as those simply exposed to this drug undergo changes characteristic of activation, including cortical contraction, cortical granule breakdown, a loss of MPF and CSF activities, and pronuclear formation. The time required for 6-DMAP to induce egg activation is inversely correlated to its concentration. Interestingly, eggs that have been injected with EGTA, and thus are unable to respond to activation stimuli such as pricking and A23187 or urethane treatment, can also be activated by exposure to 6-DMAP. In contrast, eggs exposed to or injected with a 6-DMAP analogue (6-aminopurine or puromycin) or a protein synthesis inhibitor (cycloheximide or emetine or puromycin) are not activated. As well, eggs injected in CaLM with 6-DMAP simultaneously with a phosphatase inhibitor (NaF or ammonium molybdate) fail to become activated. Although 6-DMAP-activated eggs remain at the pronucleus stage so long as 6-DMAP is present, they resume cell cycle activities after the drug is withdrawn. They form cleavage furrows, disassemble pronuclear envelopes, and recondense chromosomes. Also, MPF activity reappears and cycles at least twice, peaking each time shortly before cleavage furrow formation. These results suggest that activation of Xenopus eggs arrested at metaphase II by inhibition of protein phosphorylation does not require intracellular Ca release and that maintenance of the egg at metaphase II depends upon continuous protein phosphorylation.  相似文献   

19.
Ascidians (invertebrate chordates) are very abundant in many marine subtidal areas. They often live in dense multispecies clumps; thus, interspecific competition for space may be intense. Although most noncolonial species are broadcast spawners, their eggs can be fertilized only by sperm of the same species (1). Multiple fertilization is lethal and all animals have evolved blocks to polyspermy. Ascidian eggs block polyspermy by enzymatic (2) and electrical mechanisms (3). Sperm bind to N-acetylglucosamine groups on the vitelline coat (4, 5, 6, 7). Follice cells surrounding the vitelline coat release N-acetylglucosaminidase during egg activation (8), preventing the binding of all sperm but a few (2). I show here that this interaction is not species-specific; sperm from one species can cause glycosidase release from follicle cells of a second species. Furthermore, once glycosidase release has been induced, the subsequent addition of sperm from the egg-producing species fails to fertilize a substantial proportion of these eggs. This leads to the hypothesis that sperm from one species of ascidian can interfere with fertilization of a second species. While intraspecific sperm competition has been well documented in several taxa (9, 10), this is the first record of sperm competition between species, or interspecific sperm competition.  相似文献   

20.
Fertilization-induced intracellular calcium (Ca(2+)) oscillations stimulate the onset of mammalian development, and little is known about the biochemical mechanism by which these Ca(2+) signals are transduced into the events of egg activation. This study addresses the hypothesis that transient increases in Ca(2+) similar to those at fertilization stimulate oscillatory Ca(2+)/calmodulin-dependent kinase II (CaMKII) enzyme activity, incrementally driving the events of egg activation. Since groups of fertilized eggs normally oscillate asynchronously, synchronous oscillatory Ca(2+) signaling with a frequency similar to fertilization was experimentally induced in unfertilized mouse eggs by using ionomycin and manipulating extracellular calcium. Coanalysis of intracellular Ca(2+) levels and CaMKII activity in the same population of eggs demonstrated a rapid and transient enzyme response to each increase in Ca(2+). Enzyme activity increased 370% during the first Ca(2+) rise, representing about 60% of maximal activity, and had decreased to basal levels within 5 min from the time Ca(2+) reached its peak value. Single fertilized eggs monitored for Ca(2+) had a mean increase in CaMKII activity of 185%. One and two ionomycin-induced Ca(2+) transients resulted in 39 and 49% mean cortical granule (CG) loss, respectively, while CG exocytosis and resumption of meiosis were inhibited by a CaMKII antagonist. These studies demonstrate that changes in the level of Ca(2+) and in CaMKII activity can be studied in the same cell and that CaMKII activity is exquisitely sensitive to experimentally induced oscillations of Ca(2+) in vivo. The data support the hypothesis that CaMKII activity oscillates for a period of time after normal fertilization and temporally regulates many events of egg activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号