首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cell tryptase is stored as an active tetramer in complex with heparin in mast cell secretory granules. Previously, we demonstrated the dependence on heparin for the activation/tetramer formation of a recombinant tryptase. Here we have investigated the structural requirements for this activation process. The ability of heparin-related saccharides to activate a recombinant murine tryptase, mouse mast cell protease-6 (mMCP-6), was strongly dependent on anionic charge density and size. The dose-response curve for heparin-induced mMCP-6 activation displayed a bell-shaped appearance, indicating that heparin acts by binding to more than one tryptase monomer simultaneously. The minimal heparin oligosaccharide required for binding to mMCP-6 was 8-10 saccharide units. Gel filtration analyses showed that such short oligosaccharides were unable to generate tryptase tetramers, but instead gave rise to active mMCP-6 monomers. The active monomers were inhibited by bovine pancreatic trypsin inhibitor, whereas the tetramers were resistant. Furthermore, monomeric (but not tetrameric) mMCP-6 degraded fibronectin. Our results suggest a model for tryptase tetramer formation that involves bridging of tryptase monomers by heparin or other highly sulfated polysaccharides of sufficient chain length. Moreover, our results raise the possibility that some of the reported activities of tryptase may be related to active tryptase monomers that may be formed according to the mechanism described here.  相似文献   

2.
Tryptase, a serine protease with trypsin-like substrate cleavage properties, is one of the key effector molecules during allergic inflammation. It is stored in large quantities in the mast cell secretory granules in complex with heparin proteoglycan, and these complexes are released during mast cell degranulation. In the present paper, we have studied the mechanism for tryptase activation. Recombinant mouse tryptase, mouse mast cell protease 6 (mMCP-6), was produced in a mammalian expression system. The mMCP-6 fusion protein contained an N-terminal 6 x His tag followed by an enterokinase (EK) site replacing the native activation peptide (6xHis-EK-mMCP-6). In the absence of heparin, barely detectable enzyme activity was obtained after enterokinase cleavage of 6xHis-EK-mMCP-6 over a pH range of 5.5-7.5. However, when heparin was present, 6xHis-EK-mMCP-6 yielded active enzyme when enterokinase cleavage was performed at pH 5.5-6.0 but not at neutral pH. Affinity chromatography analysis showed that mMCP-6 bound strongly to heparin-Sepharose at pH 6.0 but not at neutral pH. After enterokinase cleavage of the sample at pH 6.0, mMCP-6 occurred in inactive monomeric form as shown by FPLC analysis on a Superdex 200 column. When heparin was added at pH 6.0, enzymatically active higher molecular weight complexes were formed, e.g., a dominant approximately 200 kDa complex that may correspond to tryptase tetramers. No formation of active tetramers was observed at neutral pH. When injected intraperitoneally, mMCP-6 together with heparin caused neutrophil influx, but no signs of inflammation were seen in the absence of heparin. The present paper thus indicates a crucial role for heparin in the formation of active mast cell tryptase.  相似文献   

3.
Mouse mast cell protease (mMCP) 6 and mMCP-7 are homologous tryptases stored in granules as macromolecular complexes with heparin and/or chondroitin sulfate E containing serglycin proteoglycans. When pro-mMCP-7 and pseudozymogen forms of this tryptase and mMCP-6 were separately expressed in insect cells, all three recombinant proteins were secreted into the conditioned medium as properly folded, enzymatically inactive 33-kDa monomers. However, when their propeptides were removed, mMCP-6 and mMCP-7 became enzymatically active and spontaneously assumed an approximately 150-kDa tetramer structure. Heparin was not required for this structural change. When incubated at 37 degrees C, recombinant mMCP-7 progressively lost its enzymatic activity in a time-dependent manner. Its N-linked glycans helped regulate the thermal stability of mMCP-7. However, the ability of this tryptase to form the enzymatically active tetramer was more dependent on a highly conserved Trp-rich domain on its surface. Although recombinant mMCP-6 and mMCP-7 preferred to form homotypic tetramers, these tryptases readily formed heterotypic tetramers in vitro. This latter finding indicates that the tetramer structural unit is a novel way the mast cell uses to assemble varied combinations of tryptases.  相似文献   

4.
Fukuoka Y  Schwartz LB 《Biochemistry》2004,43(33):10757-10764
beta-Tryptase is a trypsin-like serine protease stored in mast cell secretory granules primarily as an enzymatically active tetramer. The current study aims to determine whether monomeric beta-tryptase also can exhibit enzyme activity, as suggested previously. At neutral pH beta-tryptase tetramers in the absence of heparin or dextran sulfate spontaneously convert to inactive monomers. Addition of a polyanion to these monomers at neutral pH fails to convert them back to a tetramer or to an enzymatically active state. In contrast, at acidic pH addition of a polyanion resurrects enzyme activity. Whether this activity is associated with tetramers or monomers depends on the concentration of beta-tryptase. Under the experimental conditions employed at pH 6 in the presence of heparin, the monomer concentration at which 50% conversion to tetramers occurs is 193 ng/mL. Activity against tripeptide substrates by monomers is detected at pH 6 but not at pH 7.4, whereas tetramer activity is greater at pH 7.4 than pH 6.0. Active monomers are inhibited by soybean trypsin inhibitor, bovine pancreatic trypsin inhibitor, antithrombin III, and alpha2-macroglobulin, whereas active tetramers are resistant to these inhibitors. Active monomers form complexes with these inhibitors and cleave both antithrombin III and alpha2-macroglobulin. These inhibitors also prevent reconstitution of monomers to tetramers, indicating that inactive monomers become active monomers before becoming active tetramers. The ability of tryptase monomers to become active at acidic pH raises the possibilities of expanded substrate specificities as well as inhibitor susceptibilities where the low-pH environments associated with inflammation or poor vascularity are encountered in vivo.  相似文献   

5.
A tryptic protease with the characteristics of a mast cell tryptase was purified from dog mastocytoma cells propagated in nude mice. Partial amino acid sequence of the mastocytoma tryptase revealed unexpected differences in comparison with other mast cell and leukocyte granule protease sequences. Extraction from mastocytoma homogenates at high ionic strength, followed by gel filtration and benzamidine affinity chromatography yielded a product with several closely spaced bands (Mr 30,000-32,000) on gel electrophoresis and a single N-terminal sequence. Nondenaturing analytical gel filtration revealed an apparent Mr of 132,000, suggesting noncovalent association as a tetramer. Studies with peptide p-nitroanilides indicated pronounced substrate preferences, with P1 arginine preferred to lysine. Benzoyl-L-Lys-Gly-Arg-p-nitroanilide was the best of the substrates screened. Inhibition by diisopropyl fluorophosphate and tosyllysine chloromethyl ketone indicated that the enzyme is a serine protease. Like the tryptases of human mast cells, mastocytoma tryptic protease was inhibited by NaCl, resistant to inactivation by alpha 1-proteinase inhibitor and plasma, and stabilized by heparin. Comparison of the N-terminal 24 residues of mastocytoma tryptase revealed 80% identity with the more limited sequence reported for human lung tryptase, and surprisingly, closer homology to serine proteases of digestion and clotting than to other leukocyte granule proteases sequenced to date, including mast cell chymase. The N-terminal isoleucine is the homolog of trypsinogen Ile-16 which becomes the new N-terminus upon cleavage of the activation peptide. Thus, the tryptase N-terminus is related to the catalytic domain of activated serine proteases, and lacks the N-terminal regulatory domains found in most clotting and complement serine proteases. These findings provide further evidence that tryptases are unique serine proteases and that they may be less closely related in evolution and function than are other leukocyte granule proteases described to date.  相似文献   

6.
Heparin antagonists are potent inhibitors of mast cell tryptase   总被引:7,自引:0,他引:7  
Tryptase may be a key mediator in mast cell-mediated inflammatory reactions. When mast cells are activated, they release large amounts of these tetrameric trypsin-like serine proteases. Tryptase is present in a macromolecular complex with heparin proteoglycan where the interaction with heparin is known to be essential for maintaining enzymatic activity. Recent investigations have shown that tryptase has potent proinflammatory activity, and inhibitors of tryptase have been shown to modulate allergic reactions in vivo. Many of the tryptase inhibitors investigated previously are directed against the active site. In the present study we have investigated an alternative approach for tryptase regulation. We show that the heparin antagonists Polybrene and protamine are potent inhibitors of both human lung tryptase and of recombinant mouse tryptase (mouse mast cell protease 6). Protamine inhibited tryptase in a competitive manner whereas Polybrene showed noncompetitive inhibition kinetics. Treatment of tetrameric, active tryptase with Polybrene caused dissociation into monomers, accompanied by complete loss of enzymatic activity. The present report thus suggests that heparin antagonists potentially may be used in treatment of mast cell-mediated diseases such as asthma.  相似文献   

7.
Tryptase, a tetrameric serine protease, is a main constituent of the secretory granules in human mast cells, where it is stored in complex with heparin or chondroitin sulfate proteoglycan. Human tryptase has been implicated in a variety of clinical conditions including asthma, but the mechanisms that lead to its tetramerization/activation have not been extensively investigated. Here we addressed the activation mechanisms for human betaI and betaII-tryptase, which differ in that betaI-tryptase is N-glycosylated at Asn102 whereas betaII-tryptase has a Lys residue at position 102, and consequently lacks the corresponding N-glycosylation. We found that both tryptases were dependent on heparin for activation/tetramerization, but whereas betaI-tryptase activation preferentially occurred at acidic pH, betaII-tryptase activation was less pH-dependent. Both betaI and betaII-tryptase bound strongly to heparin-Sepharose at acidic pH but with lower affinity at neutral pH. Further, while addition of heparin to betaI-tryptase predominantly resulted in formation of active tetrameric enzyme, betaII-tryptase showed a tendency to form inactive aggregates. betaI and betaII-tryptase were similar in that the minimal heparin size to induce activation was an octasaccharide and in that the interaction with heparin and structurally related polysaccharides was dependent on high anionic charge density rather than on specific structural motifs. Addition of decasaccharides to both betaI and betaII-tryptase resulted in the formation of active monomeric enzyme, whereas intact heparin promoted assembly of tetrameric enzyme. This, together with a bell-shaped dose response curve for heparin-induced activation, suggests that the mechanism for tetramerization involves bridging of individual tryptase monomers by heparin. Taken together, this study indicates a key role for heparin in the activation of human beta-tryptase.  相似文献   

8.
Activated mast cells release a variety of potent inflammatory mediators including histamine, cytokines, proteoglycans, and serine proteases. The serine proteases belong to either the chymase (chymotrypsin-like substrate specificity) or tryptase (trypsin-like specificity) family. In this report we have investigated the substrate specificity of a recently identified mast cell protease, rat mast cell protease-4 (rMCP-4). Based on structural homology, rMCP-4 is predicted to belong to the chymase family, although rMCP-4 has previously not been characterized at the protein level. rMCP-4 was expressed with an N-terminal His tag followed by an enterokinase site substituting for the native activation peptide. The enterokinase-cleaved fusion protein was labeled by diisopropyl fluorophosphate, demonstrating that it is an active serine protease. Moreover, rMCP-4 hydrolyzed MeO-Suc-Arg-Ala-Tyr-pNA, thus verifying that this protease belongs to the chymase family. rMCP-4 bound to heparin, and the enzymatic activity toward MeO-Suc-Arg-Ala-Tyr-pNA was strongly enhanced in the presence of heparin. Detailed analysis of the substrate specificity was performed using peptide phage display technique. After six rounds of amplification a consensus sequence, Leu-Val-Trp-Phe-Arg-Gly, was obtained. The corresponding peptide was synthesized, and rMCP-4 was shown to cleave only the Phe-Arg bond in this peptide. This demonstrates that rMCP-4 displays a striking preference for bulky/aromatic amino acid residues in both the P1 and P2 positions.  相似文献   

9.
Myeloperoxidase (MPO) is an important component of the neutrophil response to microbial infection. In this paper we report an additional activity of MPO, the potent and selective inhibition of human mast cell tryptase. MPO inhibits human mast cell tryptase in a time-dependent manner with an IC50 of 16 nM at 1 h. In contrast, MPO does not inhibit trypsin, thrombin, plasmin, factor Xa, elastase, or cathepsin G. It is the native protein conformation of MPO and not its enzyme activity that is responsible for tryptase inhibition. Heparin, at high concentrations, can prevent the inhibition of tryptase by MPO. We have shown by size-exclusion chromatography that MPO promotes the dissociation of active tryptase tetramer to inactive monomer. These data suggest that MPO inhibits tryptase by interfering with the heparin stabilization of tryptase tetramer. We have previously shown that lactoferrin (another neutrophil-associated protein) also inhibits tryptase activity by a similar mechanism. The finding that MPO is a potent inhibitor of tryptase lends further support to the hypothesis that neutrophil proteins, such as MPO and lactoferrin, may play a regulatory role as endogenous suppressers of tryptase enzyme activity.  相似文献   

10.
Tryptase, a serine protease, is the major protein component in mast cells. In an animal model of asthma, tryptase has been established as an important mediator of inflammation and late airway responses induced by antigen challenge. Human tryptase is notable for its tetrameric structure, requirement of heparin for stability, and resistance to endogenous inhibitors. Human protryptase was expressed as a recombinant protein in Pichia pastoris. The recombinant protein consisted of two forms of protryptase, one containing the entire propeptide and the other containing only the Val-Gly dipeptide at its amino terminus. Isolation of active recombinant tryptase required a two column purification protocol and included a heparin- and dipeptidyl peptidase I-dependent activation step. Purified recombinant tryptase migrated as a tetramer on a gel filtration column and displayed kinetic parameters identical to those of a native tryptase obtained from HMC-1 cells, a human mast cell line. Recombinant and HMC-1 tryptase exhibited comparable sensitivities to an array of protein and low-molecular-weight inhibitors, including one that is highly specific for tryptase (APC-1167). Similarly, the recombinant enzyme cleaved both alpha- and beta-chains of fibrinogen to generate fibrinogen fragments indistinguishable from those generated by HMC-1-derived tryptase. Thus, recombinant tryptase expressed in P. pastoris displays physical and enzymatic properties essentially identical to the native enzyme. This system provides a cost-effective and easy to manipulate expression system that will enable the functional characterization of this unique enzyme.  相似文献   

11.
We investigated the histochemical characteristics of mast cell tryptase in different mouse tissues. By use of peptide substrates, tryptase activity could be demonstrated in unfixed connective tissue mast cells in different tissues, including the stomach. Tryptase activity was better localized after aldehyde fixation and frozen sectioning, and under such conditions was also demonstrated in mucosal mast cells of the stomach but not in those of the gut mucosa. Double staining by enzyme histochemistry followed by toluidine blue indicated that the tryptase activity was present only in mast cells and that all mast cells in the stomach mucosa contained the enzyme. The peptide substrates z-Ala-Ala-Lys-4-methoxy-2-naphthylamide and z-Gly-Pro-Arg-4-methoxy-2-naphthlyamide, which are substrates of choice for demonstrating tryptase in other species, were most effective for demonstrating mouse tryptase. The use of protease inhibitors further indicated that activity present in all mast cells was tryptase. Safranin O did not stain stomach mucosal mast cells, suggesting that the tryptase present in these cells was active in the absence of heparin sulfate proteoglycan.  相似文献   

12.
C V Altamirano  O Lockridge 《Biochemistry》1999,38(40):13414-13422
Human butyrylcholinesterase (BChE) in serum is composed predominantly of tetramers. The tetramerization domain of each subunit is contained within 40 C-terminal residues. To identify key residues within this domain participating in tetramer stabilization, the interaction between C-terminal 46 residue peptides was quantitated in the yeast two-hybrid system. The wild-type peptide interacted strongly with another wild-type peptide in the yeast two-hybrid system. The C571A mutant peptides interacted to a similar degree as the wild-type. However, the mutant in which seven conserved aromatic residues (Trp 543, Phe 547, Trp 550, Tyr 553, Trp 557, Phe 561, and Tyr 564) and C571 were altered to alanines showed only 12% of the interaction seen with the wild-type peptide. The seven mutations (aromatics-off) were incorporated into the complete BChE molecule, with or without the C571A mutation, and expressed in 293T and CHO-K1 cells. Expression of wild-type BChE in these cell lines yielded 10% tetramers. The aromatics-off mutant formed dimers and monomers but no tetramers. The aromatics-off/C571A mutant yielded only monomers. Addition of poly-L-proline to culture medium, or coexpression with the N-terminus of COLQ including the proline-rich attachment domain (Q(N)PRAD), increased the amount of tetrameric wild-type BChE from 10 to 70%, but had no effect on the G534stop (lacking 41 C-terminal residues) and the aromatics-off mutants. Recombinant BChE produced by coexpression with Q(N)PRAD was purified by column chromatography. The purified tetramers contained the FLAG-tagged Q(N)PRAD peptide. These observations suggest that the stabilization of BChE tetramers is mediated through the interaction of the seven conserved aromatic residues and that poly-L-proline and PRAD act through these aromatic residues to induce tetramerization.  相似文献   

13.
Heparin-deficient mice, generated by gene targeting of N-deacetylase/N-sulfotransferase-2 (NDST-2), display severe mast cell defects, including an absence of stored mast cell proteases. However, the mechanism behind these observations is not clear. Here we show that NDST-2+/+ bone marrow-derived mast cells cultured in the presence of IL-3 synthesise, in addition to highly sulphated chondroitin sulphate (CS), small amounts of equally highly sulphated heparin-like polysaccharide. The corresponding NDST-2-/- cells produced highly sulphated CS only. Carboxypeptidase A (CPA) activity was detected in NDST+/+ cells but was almost absent in the NDST-/- cells, whereas tryptase (mouse mast cell protease 6; mMCP-6) activity and antigen was detected in both cell types. Antigen for the chymase mMCP-5 was detected in NDST-2+/+ cells but not in the heparin-deficient cells. Northern blot analysis revealed mRNA expression of CPA, mMCP-5 and mMCP-6 in both wild-type and NDST-2-/- cells. A approximately 36 kDa CPA band, corresponding to proteolytically processed active CPA, as well as a approximately 50 kDa pro-CPA band was present in NDST-2+/+ cells. The NDST-2-/- mast cells contained similar levels of pro-CPA as the wild-type mast cells, but the approximately 36 kDa band was totally absent. This indicates that the processing of pro-CPA to its active form may require the presence of heparin and provides the first insight into a mechanism by which the absence of heparin may cause disturbed secretory granule organisation in mast cells.  相似文献   

14.
p53 is a homotetrameric tumor suppressor protein that is found to be mutated in most human cancers. Some of these mutations, particularly mutations to R337, fall in the tetramerization domain and cause defects in tetramer formation leading to loss of function. Mutation to His at this site has been found to destabilize the tetramer in a pH-dependent fashion. In structures of the tetramerization domain determined by crystallography, R337 from one monomer makes a salt bridge with D352 from another monomer, apparently helping to stabilize the tetramer. Here we present molecular dynamics simulations of wild-type p53 and the R337His mutant at several different pH and salt conditions. We find that the 337-352 salt bridge is joined by two other charged side chains, R333 and E349. These four residues do not settle into a fixed pattern of salt bridging, but continue to exchange salt-bridging partners on the nanosecond time scale throughout the simulation. This unusual system of fluid salt bridging may explain the previous finding from alanine scanning experiments that R333 contributes significantly to protein stability, even though in the crystal structure it is extended outward into solvent. This extended conformation of R333 appears to be the result of a specific crystal contact and, this contact being absent in the simulation, R333 turns inward to join its interaction partners. When R337 is mutated to His but remains positively charged, it maintains the original interaction with D352, but the newly observed interaction with E349 is weakened, accounting for the reduced stability of R337H even under mildly acidic conditions. When this His is deprotonated, the interaction with D352 is also lost, accounting for the further destabilization observed under mildly alkaline conditions. Simulations were carried out using both explicit and implicit solvent models, and both displayed similar behavior of the fluid salt-bridging cluster, suggesting that implicit solvent models can capture at least the qualitative features of this phenomenon as well as explicit solvent. Simulations under strongly acidic conditions in implicit solvent displayed the beginnings of the unfolding process, a destabilization of the hydrophobic dimer-dimer interface. Computational alanine scanning using the molecular mechanics Poisson-Boltzmann surface area method showed significant correlation to experimental unfolding data for charged and polar residues, but much weaker correlation for hydrophobic residues.  相似文献   

15.
Cynomolgus monkey tryptase was purified to homogeneity from lung tissue. Reducing SDS-PAGE analysis of the monkey enzyme produced a doublet at 30–32 kDa, which reacted with antibodies against human lung tryptase on a Western blot. N-terminal sequence analysis of the monkey enzyme yielded a sequence that was identical to human tryptase out to 15 residues. Gel filtration chromatography either in the presence or absence of heparin indicated that the monkey enzyme had a molecular mass of approximately 250 kDa and 140 kDa, respectively, consistent with the formation of a tetramer that can bind heparin. Other similarities between human and monkey tryptase included the ability to degrade vasoactive intestinal peptide and a resistance to inhibition by biological serine protease inhibitors. However, the two enzymes displayed markedly different pH stability profiles. Monkey tryptase was unstable at pH values over 7.0, even in the presence of heparin, displaying a half-life of 10.9 min at pH 8.0. In addition, the stabilizing effect of heparin was pH dependent, being most prevalent at lower pH values. Therefore, the biological activity of monkey tryptase may be controlled by both pH and the availability of heparin.  相似文献   

16.
The Escherichia coli mispair-binding protein MutS forms dimers and tetramers in vitro, although the functional form in vivo is under debate. Here we demonstrate that the MutS tetramer is extended in solution using small angle x-ray scattering and the crystal structure of the C-terminal 34 amino acids of MutS containing the tetramer-forming domain fused to maltose-binding protein (MBP). Wild-type C-terminal MBP fusions formed tetramers and could bind MutS and MutS-MutL-DNA complexes. In contrast, D835R and R840E mutations predicted to disrupt tetrameric interactions only allowed dimerization of MBP. A chromosomal MutS truncation mutation eliminating the dimerization/tetramerization domain eliminated mismatch repair, whereas the tetramer-disrupting MutS D835R and R840E mutations only modestly affected MutS function. These results demonstrate that dimerization but not tetramerization of the MutS C terminus is essential for mismatch repair.  相似文献   

17.
Mast cell tryptase is a secretory granule associated serine protease with trypsin-like specificity released extracellularly during mast cell degranulation. To determine the full primary structure of the catalytic domain and precursor forms of tryptase and to gain insight into its mode of activation, we cloned cDNAs coding for the complete amino acid sequence of dog mast cell tryptase and a second, possibly related, serine protease. Using RNA from dog mastocytoma cells, we constructed a cDNA library in lambda gt 10. Screening of the library with an oligonucleotide probe based on the N-terminal sequence of tryptase purified from the same cell source allowed us to isolate and sequence overlapping clones coding for dog mast cell tryptase. The tryptase sequence includes the essential residues of the catalytic triad and an aspartic acid at the base of the putative substrate binding pocket that confers P1 Arg and Lys specificity on tryptic serine proteases. The apparent N-terminal signal/activation peptide terminates in a glycine. A glycine in this position has not been observed previously in serine proteases and suggests a novel mode of activation. Additional screening of the library with a trypsinogen cDNA led to the isolation and sequencing of a full-length clone apparently coding for the complete sequence of a second tryptic serine protease (DMP) which is only 53.4% identical with the dog tryptase sequence but which contains an apparent signal/activation peptide also terminating in a glycine. Thus, the proteases encoded by these cloned cDNAs may share a common mode of activation from N-terminally extended precursors.  相似文献   

18.
The functional role of mast cells in rheumatoid synovium was investigated by assessing the ability of mast cell tryptase to activate latent collagenase derived from rheumatoid synoviocytes. Tryptase, a mast cell neutral protease, was demonstrated in situ to reside in rheumatoid synovial mast cells, by an immunoperoxidase technique using a mouse mAb against tryptase, and in vitro to be released by dispersed synovial mast cells after both immunologic and nonimmunologic challenge. Each rheumatoid synovial mast cell contains an average of 6.2 pg of immunoreactive tryptase and the percent release values of this protease correlated with those of histamine (r = 0.58, p less than 0.01). The ability of purified tryptase to promote collagenolysis was demonstrated in a dose-dependent fashion using latent collagenase derived from rheumatoid synovium, synovial fluid, IL-1-stimulated cultured synoviocytes, and partially purified latent collagenase derived from conditioned media, with between 10 and 92% of the collagen substrate degraded. [3H] Collagen, treated with tryptase-activated latent collagenase, was subjected to electrophoresis on SDS polyacrylamide gels and autoradiography showed the collagen degradation pattern (A, B) characteristically produced by collagenase. Mast cell lysates also activated synovial latent collagenase yielding 24% digestion of collagen substrate. This activator in mast cell lysates could be inhibited by diisopropylflurophosphate or by immunoadsorption of tryptase. Thus, mast cells may activate metalloproteinases and play a role in the catabolism of collagen that occurs in rheumatoid synovium.  相似文献   

19.
The tryptase locus on mouse chromosome 17A3.3 contains 13 genes that encode enzymatically active serine proteases with different tissue expression profiles and substrate specificities. Mouse mast cell protease (mMCP) 6, mMCP-7, mMCP-11/protease serine member S (Prss) 34, tryptase 6/Prss33, tryptase ε/Prss22, implantation serine protease (Isp) 1/Prss28, and Isp-2 are constitutively exocytosed enzymes. We now demonstrate that tryptase 5/Prss32, pancreasin/Prss27, and testis serine protease-1 are inserted into plasma membranes via glycosylphosphatidylinositol (GPI) anchors analogous to Prss21, and that these serine proteases can be released from the cell’s surface by a phosphatidylinositol-specific phospholipase C. These data suggest that the C-terminal residues play key roles in determining where tryptases compartmentalize in cells. GPI-anchored proteins are targeted to lipid rafts. Thus, our identification of a number of GPI-anchored tryptases whose genes reside at mouse chromosome 17A3.3 also implicates important biological functions for this new family of serine proteases on the surfaces of cells.  相似文献   

20.
Mast cell populations can be distinguished by differences in the content and substrate specificity of their two major cytoplasmic granule proteases, the chymases and the tryptases. To explore the origins of differences in the types of proteases present in mast cells, we used a double cytochemical staining technique to reveal both chymase and tryptase in cells from four lines of dog mast cell tumors containing both enzymes. We expected that if chymase and tryptase were expressed together during cell development the relative staining intensity of chymase compared to tryptase would be constant among different cells of each tumor. Instead, we found substantial variation in the relative intensity of chymase and tryptase staining among cells of a given mastocytoma line, each of which contained cells presumed to be monoclonal in origin but heterogeneous with respect to cell development. The overall staining intensity for chymase or tryptase correlated with the amount of protease activity in extracts of tumor homogenates. Staining specificity was established by use of selective inhibitors and competitive substrates and was tested on various types of dog cells obtained by bronchoalveolar lavage. The results suggest that active chymase and tryptase may be expressed differently during mast cell differentiation and support the possibility of a close developmental relationship between mast cells differing in protease phenotype. Moreover, the success of the staining procedures applied to mastocytoma cells suggests that they may be of general utility in phenotyping of mast cells according to the protease activities present in their granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号