首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graded electrically excited responsiveness of Romalea muscle fibers is converted to all-or-none activity by Ba++, Sr++, or Ca++, the two former being much the more effective in this action. The change occurs with as little as 7 to 10 per cent of Na+ substituted by Ba++. The spikes now produced have overshoots and may be extremely prolonged, lasting many seconds. During the spike the membrane resistance is lower than in the resting fiber, but the resting resistance and time constant are considerably increased by the alkali-earth ions. The excitability is also increased, spikes arising neurogenically from spontaneous repetitive discharges in the axon as well as myogenically from spontaneous activity in the muscle fibers. Repetitive responses frequently occur on intracellular stimulation with a brief pulse. The data indicate that the alkali-earth ions exert a complex of effects on the different action components of electrically excitable membrane. They may be described in terms of the ionic theory as follows: The resting K+ conductance is diminished. The sodium inactivation process is also diminished, and sodium activation may be increased. Together these changes can act to convert graded responsiveness to the all-or-none variety. The alkali-earth ions can also to some degree carry inward positive charge during activity, since spikes are produced when Na+ is fully replaced with the divalent ions.  相似文献   

2.
Effects on Mg++ transport in rat liver mitochondria of three reagents earlier shown to affect mitochondrial K+ transport have been examined. The sulfhydryl reactive reagent phenylarsine oxide, which activates K+ flux into respiring mitochondria, also stimulates Mg++ influx. The K+ analog Ba++, when taken up into the mitochondrial matrix, inhibits influx of both K+ and Mg++. The effect on Mg++ influx is seen only if Mg++, which blocks Ba++ accumulation, is added after a preincubation with Ba++. Thus the inhibition of Mg++ influx appears to require interaction of Ba++ at the matrix side of the inner mitochondrial membrane. Added Ba++ also diminishes observed rates of Mg++ efflux but not K+ efflux. This difference may relate to a higher concentration of Ba++ remaining in the medium in the presence of Mg++ under the conditions of our experiments. Pretreatment of mitochondria with dicyclohexylcarbodiimide (DCCD), under conditions which result in an increase in the apparentK m for K+ of the K+ influx mechanism, results in inhibition of Mg++ influx from media containing approximately 0.2 mM Mg++. The inhibitory effect of DCCD on Mg++ influx is not seen at higher external Mg++ (0.8 mM). This dependence on cation concentration is similar to the dependence on K+ concentration of the inhibitory effect of DCCD on K+ influx. Although mitochondrial Mg++ and K+ transport mechanisms exhibit similar reagent sensitivities, whether Mg++ and K+ share common transport catalysts remains to be established.Abbreviations used: DCCD, dicyclohexylcarbodiimide; PheAsO, phenylarsine oxide.  相似文献   

3.
Summary Electrical membrane properties of solitary spiking cells during newt (Cynops pyrrhogaster) retinal regeneration were studied with whole-cell patch-clamp methods in comparison with those in the normal retina.The membrane currents of normal spiking cells consisted of 5 components: inward Na+ and Ca++ currents and 3 outward K+ currents of tetraethylammonium (TEA)-sensitive, 4-aminopyridine (4-AP)-sensitive, and Ca++-activated varieties. The resting potential was about -40mV. The activation voltage for Na+ and Ca++ currents was about -30 and -17 mV, respectively. The maximum Na+ and Ca++ currents were about 1057 and 179 pA, respectively.In regenerating retinae after 19–20 days of surgery, solitary cells with depigmented cytoplasm showed slowrising action potentials of long duration. The ionic dependence of this activity displayed two voltage-dependent components: slow inward Na+ and TEA-sensitive outward K+ currents. The maximum inward current (about 156 pA) was much smaller than that of the control. There was no indication of an inward Ca++ current.During subsequent regeneration, the inward Ca++ current appeared in most spiking cells, and the magnitude of the inward Na+, Ca++, and outward K+ currents all increased. By 30 days of regeneration, the electrical activities of spiking cells became identical to those in the normal retina. No significant difference in the resting potential and the activation voltage for Na+ and Ca++ currents was found during the regenerating period examined.  相似文献   

4.
Summary This paper reports experiments designed to assess the relations between net salt absorption and transcellular routes for ion conductance in single mouse medullary thick ascending limbs of Henle microperfusedin vitro. The experimental data indicate that ADH significantly increased the transepithelial electrical conductance, and that this conductance increase could be rationalized in terms of transcellular conductance changes. A minimal estimate (G c min ) of the transcellular conductance, estimated from Ba++ blockade of apical membrane K+ channels, indicated thatG c min was approximately 30–40% of the measured transepithelial conductance. In apical membranes, K+ was the major conductive species; and ADH increased the magnitude of a Ba++-sensitive K+ conductance under conditions where net Cl absorption was nearly abolished. In basolateral membranes, ADH increased the magnitude of a Cl conductance; this ADH-dependent increase in basal Cl conductance depended on a simultaneous hormone-dependent increase in the rate of net Cl absorption. Cl removal from luminal solutions had no detectable effect onG e , and net Cl absorption was reduced at luminal K+ concentrations less than 5mm; thus apical Cl entry may have been a Na+,K+,2Cl cotransport process having a negligible conductance. The net rate of K+ secretion was approximately 10% of the net rate of Cl absorption, while the chemical rate of net Cl absorption was virtually equal to the equivalent short-circuit current. Thus net Cl absorption was rheogenic; and approximately half of net Na+ absorption could be rationalized in terms of dissipative flux through the paracellular pathway. These findings, coupled with the observation that K+ was the principal conductive species in apical plasma membranes, support the view that the majority of K+ efflux from cell to lumen through the Ba++-sensitive apical K+ conductance pathway was recycled into cells by Na+,K+,2Cl cotransport.  相似文献   

5.
Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2) form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1) for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35–55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.  相似文献   

6.
The stimulation of dicotyledonous leaf growth by light depends on increased H+ efflux, to acidify and loosen the cell walls, and is enhanced by K+ uptake. The role of K+ is generally considered to be osmotic for turgor maintenance. In coleoptiles, auxin‐induced cell elongation and wall acidification depend on K+ uptake through tetraethylammonium (TEA)‐sensitive channels (Claussen et al., Planta 201, 227–234, 1997), and auxin stimulates the expression of inward‐rectifying K+ channels ( Philippar et al. 1999) . The role of K+ in growing, leaf mesophyll cells has been investigated in the present study by measuring the consequences of blocking K+ uptake on several growth‐related processes, including solute accumulation, apoplast acidification, and membrane polarization. The results show that light‐stimulated growth and wall acidification of young tobacco leaves is dependent on K+ uptake. Light‐stimulated growth is enhanced three‐fold over dark levels with increasing external K+, and this effect is blocked by the K+ channel blockers, TEA, Ba++ and Cs+. Incubation in 10 mm TEA reduced light‐stimulated growth and K+ uptake by 85%, and completely inhibited light‐stimulated wall acidification and membrane polarization. Although K+ uptake is significantly reduced in the presence of TEA, solute accumulation is increased. We suggest that the primary role of K+ in light‐stimulated leaf growth is to provide electrical counterbalance to H+ efflux, rather than to contribute to solute accumulation and turgor maintenance.  相似文献   

7.
Summary Addition of the polyene antibiotic filipin (50 m) to the outside bathing solution (OBS) of the isolated frog skin resulted in a highly significant active outward transport of K+ because filipinper se increases the nonspecific Na+ and K+ permeability of the outward facing membrane. The K+ transport was calculated from the chemically determined changes in K+ concentrations in the solution bathing the two sides of the skin. The active transepithelial K+ transport required the presence of Na+ in the OBS, but not in the inside bathing solution (IBS), and it was inhibited by the Na+, K+-ATPase inhibitor ouabain. The addition of Ba++ to the IBS in the presence of filipin in the OBS resulted in an activation of the transepithelial K+ transport and in an inhibition of the active Na+ transport. This is in agreement with the notion that Ba++ decreases the passive K+ permeability of the inward facing membrane. In the presence of amiloride (which blocks the specific Na permeability of the outward facing membrane) and Ba++ there was a good correlation between the active Na+ and K+ transport. It is concluded that the active transepithelial K+ transport is carried out by a coupled electrogenic Na–K pump, and it is suggested that the pump ratio (Na/K) is 1.5.  相似文献   

8.
The influx of Na+, K+, Rb+, and Cs+ into frog sartorius muscle has been followed. The results show that a maximum rate is found for K+, while Na+ and Cs+ penetrate much more slowly. Similar measurements with Ca++, Ba++, and Ra++ show that Ba++ penetrates at a rate somewhat greater than that of either Ca++ or Ra++. All these divalent cations, however, penetrate at rates much slower than do the alkali cations. The results obtained are discussed with reference to a model that has been developed to explain the different penetration rates for the alkali cations.  相似文献   

9.
In order to clarify whether or not the electronegative olfactory mucosal potentials (EOG) are generator potentials, the effects of changed ionic enviroment were studied. The EOG decreased in amplitude and in some cases nearly or completely disappeared, when Na+ in the bathing Ringer solution was replaced by sucrose, Li+, choline+, tetraethylammonium+ (TEA), or hydrazine. In the K+-free Ringer solution, the negative EOG's initially increased and then decreased in amplitude. In Ringer's solution with increased K+, the negative EOG's increased in amplitude. When K+ was increased in exchange for Na+ in Ringer's solution, the negative EOG's decreased, disappeared, and then reversed their polarity (Fig. 6). Next, when the K+ was replaced by equimolar sucrose, Li+, choline+, TEA+, hydrazine, or Na+, the reversed potentials recovered completely only in Na+-Ringer's solution, but never in the other solutions. Thus, the essential role of Na+ and K+ in the negative EOG's was demonstrated. Ba++ was found to depress selectively the electropositive EOG, but it hardly decreased and never increased the negative EOG. Hence, it is concluded that Ba++ interferes only with Cl- influx, and that the negative EOG's are elicited by an increase in permeability of the olfactory receptive membrane to Na+ and K+, but not to Cl-. From the ionic mechanism it is inferred that the negative EOG's are in most cases composites of generator and positive potentials.  相似文献   

10.
In the negative EOG-generating process a cation which can substitute for Na+ was sought among the monovalent ions, Li+, Rb+, Cs+, NH4+, and TEA+, the divalent ions, Mg++, Ca++, Sr++, Ba++, Zn++, Cd++, Mn++, Co++, and Ni++, and the trivalent ions, Al+++ and Fe+++. In Ringer solutions in which Na+ was replaced by one of these cations the negative EOG's decreased in amplitude and could not maintain the original amplitudes. In K+-Ringer solution in which Na+ was replaced by K+, the negative EOG's reversed their polarity. Recovery of these reversed potentials was examined in modified Ringer solutions in which Na+ was replaced by one of the above cations. Complete recovery was found only in the normal Ringer solution. Thus, it was clarified that Na+ plays an irreplaceable role in the generation of the negative EOG's. The sieve hypothesis which was valid for the positive EOG-generating membrane or IPSP was not found applicable in any form to the negative EOG-generating membrane. The reversal of the negative EOG's found in K+- , Rb+- , and Ba++-Ringer solutions was attributed to the exit of the internal K+. It is, however, not known whether or not Cl- permeability increases in these Na+-free solutions and contributes to the generation of the reversed EOG's.  相似文献   

11.
Summary Effect of amiloride, ouabain, and Ba++ on the nonsteady-state Na–K pump flux and short-circuit current in isolated frog skin epithelia.The active Na+ transport across isolated frog skin occurs in two steps: passive diffusion across the apical membrane of the cells followed by an active extrusion from the cells via the Na+–K+ pump at the basolateral membrane. In isolated epithelia with a very small Na+ efflux, the appearing Na+-flux in the basolateral solution is equal to the rate of the pump, whereas the short-circuit current (SCC) is equal to the active transepithelial Na+ transport. It was found that blocking the passive diffusion of Na+ across the apical membrane (addition of amiloride) resulted in an instantaneous inhibition of the SCC (the transepithelial Na+ transport, whereas the appearing flux (the rate of the Na+–K+ pump) decreased with a halftime of 1.9 min. Addition of the Na+–K+ pump inhibitor ouabain (0.1mm) resulted in a faster and bigger inhibition of the appearing flux than of the SCC. Thus, by simultaneous measurement of the SCC and the appearing Na+ flux one can elucidate whether an inhibitor exerts its effect by inhibiting the pump or by decreasing the passive permeability. Addition of the K+ channel inhibitor Ba++, in a concentration which gave maximum inhibition of the SCC, had no effect on the appearing flux (the rate of the Na–K pump) in the first 2 min, although the inhibition of the SCC was already at its maximum.It is argued that in the short period, where the Ba++-induced inhibition of SCC is at its maximum and the appearing flux in unchanged, the decrease in the SCC (SCC) is equal to the net K+ flux via the Na+–K+ pump, and the coupling ratio () of the Na+–K+ pump can be calculated from the following equation =SCC t=0/SCC where SCC t=0 is the steady-state SCC before the addition of Ba++.  相似文献   

12.
Summary The rate of active K+ transport by the isolated lepidopteran midgut shows a rectangular hyperbolic relation to [K+] over the range 20 to 70mm K+ in the absence of any divalent cation. Addition of Ba++ to the hemolymph (K+ uptake) side introduces a linear component to the concentration dependence, such that active K transport is decreased at [K+] of 55mm or less, but increased transiently at higher [K+]. As [Ba++] is increased over the range 2 to 8mm the linear component increases and the saturating component decreases; in 8mm Ba++ the concentration dependence is dominated by the linear component. The effect of Ba++ cannot easily be accounted for by simple competition with K+ for basal membrane uptake sites. Similar effects might be exercised by other alkali earth cations, since the concentration dependence of active K+ transport possesses a substantial linear component in solutions containing 5mm Ca++ and 5mm Mg++ (the alkali earth metal concentrations of standard lepidopteran saline).  相似文献   

13.
Electrical properties of the muscle fiber membrane were studied in the barnacle, Balanus nubilus Darw. by using intracellular electrode techniques. A depolarization of the membrane does not usually produce an all-or-none spike potential in the normal muscle fiber even though a mechanical response is elicited. The intracellular injection of Ca++-binding agents (K2SO4 and K salt of EDTA solution, K3 citrate solution, etc.) renders the fiber capable of initiating all-or-none spikes. The overshoot of such a spike potential increases with increasing external Ca concentration, the increment for a tenfold increase in Ca concentration being about 29 mv. The threshold membrane potential for the spike and also for the K conductance increase shifts to more positive membrane potentials with increasing [Ca++]out. The removal of Na ions from the external medium does not change the configuration of the spike potential. In the absence of Ca++ in the external medium, the spike potential is restored by Ba++ and Sr++ but not by Mg++. The overshoot of the spike potential increases with increasing [Ba++]out or [Sr++]out. The Ca influx through the membrane of the fiber treated with K2SO4 and EDTA was examined with Ca45. The influx was 14 pmol per sec. per cm2 for the resting membrane and 35 to 85 pmol per cm2 for one spike. From these results it is concluded that the spike potential of the barnacle muscle fiber results from the permeability increase of the membrane to Ca++ (Ba++ or Sr++).  相似文献   

14.
Summary Specimens of Paramecium immersed in solutions of CaCl2 show graded electrogenesis in response to imposed transmembrane current. However, when BaCl2 in a final concentration of 0.25 mM is added to a 1 mM CaCl2 solution, an outward current pulse of 10-10 amp or greater elicits an all-or-none transient reversal in membrane potential having a duration of about 40 msec. An increase of [Ba++] results in (a) lower resting potential, (b) positive shift in critical firing level, (c) increased overshoot of the action potential, (d) decreased hyperpolarizing afterpotential, and (e) increased duration of the action potential (a.p.). If [Ca++] is increased along with [Ba++] so as to keep the ratio [Ba++]/[Ca++] constant, the same results are obtained except that the duration of the a. p. remains unaltered. Thus, effects a-d appear to be related to [Ba++] and not to [Ca++] or [Cl-]. The degree of overshoot in 1 mM Ca is linearly related to log [Ba++] with a slope of approximately 22 mv. With the ratio [Ba++]/[Ca++] constant, the slope closely approaches the ideal value of 29 mv. The evidence indicates that prolongation of the action potential is due to a delayed onset of Ba inactivation, and that this in turn is a function of surface-bound Ba. Other features of the action potential are absolute refractoriness during its rising and plateau phases, relative refractoriness lasting several seconds, and repetitive firing in response to steady current depolarization. The response is unaffected by TTX and TEA. Mn prolongs the action potential. Sr has an action similar to Ba, whereas the addition of K, Na, Rb, or Mg to the basic calcium medium is unaccompanied by all-or-none electrogenesis.On leave of absence from the Zoological Institute, Faculty of Science, University of Tokyo.Support came from National Science Foundation grant GB-5752x, U.S.P.H.S. grant NB-03664, and in part from Office of Naval Research grant Nonr 4785(00) administered by the Marine Biological Laboratory, Woods Hole.  相似文献   

15.
Changes in ionic conductance lying at the basis of nonlinearity of the current-voltage characteristic curve of the cell (nonsynaptic) membrane of horizontal cells were studied in experiments on the goldfish and turtle retina. All measurements were made during blocking of synaptic transmission by bright light or Co++. An increase in the K+ concentration led to depolarization and to a reduction of the steepness of the hyperpolarization branch of the current-voltage curve, whereas a decrease in K+ had the opposite effect. Changes in the Cl or Na+ concentrations had no significant effect on membrane potential or on the shape of the current-voltage curve. The principal potential-forming ion in the horizontal cells is thus K+; conductance for Cl is absent or very low, and conductance for Na+ also is evidently small. In the presence of Ba++ (2–5 mM) the steepness of the hyperpolarization branch of the current-voltage curve was increased and the whole curve became more linear. It is concluded that nonlinearity of the current-voltage curve of the horizontal cell membrane is due mainly to potential-dependent potassium channels, whose conductance increases during hyperpolarization; this increase in conductance is blocked by Ba++. An increase in the Ca++ concentration to 20 mM led to an increase in steepness of the depolarization branch of the current-voltage curve, suggesting that depolarization increases membrane conductance for Ca++.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 531–539, September–October, 1981.  相似文献   

16.
Summary Patch-clamp studies of whole-cell ionic currents were carried out in parietal cells obtained by collagenase digestion of the gastric fundus of the guinea pig stomach. Applications of positive command pulses induced outward currents. The conductance became progressively augmented with increasing command voltages, exhibiting an outwardly rectifying current-voltage relation. The current displayed a slow time course for activation. In contrast, inward currents were activated upon hyperpolarizing voltage applications at more negative potentials than the equilibrium potential to K+ (E K). The inward currents showed time-dependent inactivation and an inwardly rectifying current-voltage relation. Tail currents elicited by voltage steps which had activated either outward or inward currents reversed at nearE K, indicating that both time-dependent and voltagegated currents were due to K+ conductances. Both outward and inward K+ currents were suppressed by extracellular application of Ba2+, but little affected by quinine. Tetraethylammonium inhibited the outward current without impairing the inward current, whereas Cs+ blocked the inward current but not the outward current. The conductance of inward K+ currents, but not outward K+ currents, became larger with increasing extracellular K+ concentration. A Ca2+-mobilizing acid secretagogue, carbachol, and a Ca2+ ionophore, ionomycin, brought about activation of another type of outward K+ currents and voltage-independent cation currents. Both currents were abolished by cytosolic Ca2+ chelation. Quinine preferentially inhibited this K+ current. It is concluded that resting parietal cells of the guinea pig have two distinct types of voltage-dependent K+ channels, inward rectifier and outward rectifier, and that the cells have Ca2+-activated K+ channels which might be involved in acid secretion under stimulation by Ca2+-mobilizing secretagogues.  相似文献   

17.
Bioelectric effects of ions microinjected into the giant axon of Loligo   总被引:1,自引:0,他引:1  
1. A technique is described for recording the bioelectric activity of the squid giant axon during and following alteration of the internal axonal composition with respect to ions or other substances. 2. Experimental evidence indicates that the technique as described is capable of measuring changes in local bioelectric activity with an accuracy of 10 to 15 per cent or higher. 3. Alterations of the internal K+ or Cl- concentrations do not cause the change in resting potential expected on the basis of a Donnan mechanism. 4. The general effect of microinjection of K+ Rb+, Na+, Li+, Ba++, Ca++, Mg++, or Sr++ is to cause decrease in spike amplitude, followed by propagation block. 5. The resting potential decreases when the amplitude of the spike becomes low and block is incipient. 6. The decrease in resting potential and spike amplitude may be confined to the immediate vicinity of the injection. 7. At block, the resting potential decreases up to 50 per cent, but injection of small quantities of divalent cations may cause much larger localized depolarization. 8. The blocking effectiveness of K+, Na+, and Ca++ expressed as reciprocals of the relative amounts needed to cause block is approximately 1:5:100. Rb+ has the same low effectiveness as does K+. Li+ resembles Na+. Ba++ and Mg++ are approximately as effective as Ca++. 9. Microinjection of Na+ may cause marked prolongation of the spike at the injection site as well as decrease in its amplitude. 10. The anions used (Cl-, HCO3-, NO3-, SO4-, aspartate, and glutamate) do not seem to exert specific effects. 11. A tentative explanation is offered for the insensitivity of the resting potential to changes in the axonal ionic composition. 12. New data are presented on the range of variation, in a large sample, of the magnitude of the resting potential and spike amplitude.  相似文献   

18.
Summary The exposure of red cell ghosts to external Ca++ and K+ leads to a rapid net K+ efflux. Preincubation of the ghosts for various lengths of time in the absence of K+ in the external medium prior to a challenge with maximally effective concentrations of Ca++ and K+ renders the ghosts unresponsive to that challenge with a half-time of about 7–10 min. Preincubation at a range of K+ concentrations for a fixed length of time (60 min) prior to the challenge revealed that K+ concentrations of about 500 m or more suffice to maintain the K+ channel in a maximally responsive state for at least 60 min. These K+ concentrations are considerably lower than the K+ concentrations required to make the responsive channel respond with a maximal rate of K+ efflux. Thus, external K+ is not only necessary to induce the permeability change but also to maintain the transport system in a functional state.The presence of Mg++ or ethylenediamine-tetraacetic acid (EDTA) in the K+-free preincubation media preserves the responsiveness to a challenge with Ca++ plus K+. In contrast to external K+, the presence of external Ca++ does not reduce but rather enhances the loss of responsiveness. An excess of EDTA prevents the effects of Ca++ while washes with EDTA after exposure to Ca++ do not reverse them.In red cell ghosts that contain Ca++ buffers, the transition from a responsive to a nonresponsive state incubation in the absence of external K+ is enhanced. The effects of incubation in the presence of Ca++ in K+-free media are reversed; external Ca++ now reduces the rate at which the responsiveness is lost. The loss of responsiveness after incubation in K+-free media prior to a challenge with external K+ and internal Ca++ does also take place when K+-efflux from red cell ghosts is measured by means of42K+ into media that have the same K+ concentrations as the ghost interior. This confirms that the effects of K+-free incubation are due to the modification of the K+-selective channel rather than to an inhibition of diffusive Cl-efflux.Abbreviation used in text TRIS Tris (hydroxymethyl) aminomethan This paper is dedicated to the memory of Walther Wilbrandt.  相似文献   

19.
HL‐1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K+ channels. Our aim was to identify and characterize inward rectifier K+ channels in HL‐1 cells. External Ba2+ (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole‐cell patch‐clamp recordings. The reversal potential of the Ba2+‐sensitive current shifted with external [K+] as expected for K+‐selective channels. The slope conductance of the inward Ba2+‐sensitive current increased with external [K+]. The apparent Kd for Ba2+ was voltage dependent, ranging from 15 µM at ?150 mV to 148 µM at ?75 mV in 120 mM external K+. This current was insensitive to 10 µM glybenclamide. A component of whole‐cell current was sensitive to 150 µM 4,4′‐diisothiocyanatostilbene‐2,2′‐disulfonic acid (DIDS), although it did not correspond to the Ba2+‐sensitive component. The effect of external 1 mM Cs+ was similar to that of Ba2+. Polymerase chain reaction using HL‐1 cDNA as template and primers specific for the cardiac inward rectifier Kir2.1 produced a fragment of the expected size that was confirmed to be Kir2.1 by DNA sequencing. In conclusion, HL‐1 cells express a current that is characteristic of cardiac inward rectifier K+ channels, and express Kir2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. J. Cell. Physiol. 225: 751–756, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
In an attempt to understand the processes mediating ion transport within the root, the patch clamp technique was applied to protoplasts isolated from the cortex and stele of maize roots and their plasma membrane conductances investigated. In the whole-cell configuration, membrane hyperpolarization induced a slowly activating inwardly rectifying conductance in most protoplasts isolated from the root cortex. In contrast, most protoplasts isolated from the stele contained a slowly activating outwardly rectifying conductance upon plasma membrane depolarization. The reversal potential of the inward current indicated that it was primarily due to the movement of K+; the outwardly rectifying conductance was comparatively less selective for K+. Membrane hyperpolarization beyond a threshold of about ?70 mV induced inward currents. When EK was set negative of this threshold, inward currents activated negative of EK and no outward currents were observed positive of EK. Outward currents in the stelar protoplasts activated at potentials positive of ?85 mV. However, when EK was set positive of ?85 mV a small inward current was also observed at potentials negative (and slightly positive) of the equilibrium potential for K+. Inwardly and outwardly rectifying K+ channels were observed in outside-out patches from the plasma membrane of cortical and stelar cells, respectively. Characterization of these channels showed that they were likely to be responsible for the macroscopic ‘whole-cell’ currents. Inward and outward currents were affected differently by various K+ channel blockers (TEA+, Ba2+ and Cs+). In addition, Ca2+ above 1 mM partially blocked the inward current in a voltage-dependent manner but had little effect on the outward current. It is suggested that the inwardly rectifying conductance identified in protoplasts isolated from the cortex probably represents an important component of the low-affinity K+ uptake mechanism (mechanism II) identified in intact roots. The outwardly rectifying conductance identified in protoplasts isolated from the stele could play a role in the release of cations into the xylem vessels for transport to the shoot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号