首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fc receptors (FcRs) are immunoglobulin-binding structures that enable antibodies to perform a variety of functions by forming connections between specific recognition and effector cells. Besides eliciting cytotoxicity, inducing secretion of mediators and endocytosis of opsonized particles, FcRs are involved in the regulation of antibody production, both as integral membrane proteins and as soluble molecules released from the cell surface. Most FcRs belong to the same family of proteins as their ligands (immunoglobulin superfamily). This review contains recent data obtained by use of monoclonal antibodies and cloning studies on FcRs and FcR-like molecules. The importance of fine specificity of receptor binding site(s)--that of the conformation of FcRs and their ligands in triggering signaling mechanisms--is analyzed. The regulatory function of membrane-bound and -released FcRs; the correlation between cell cycle, FcR expression, and release; as well as the possible mechanisms of these phenomena are discussed.  相似文献   

2.
Abstract

Fc receptors (FcRs) are immunoglobulin-binding structures that enable antibodies to perform a variety of functions by forming connections between specific recognition and effector cells. Besides eliciting cytotoxicity, inducing secretion of mediators and endocytosis of opsonized particles, FcRs are involved in the regulation of antibody production, both as integral membrane proteins and as soluble molecules released from the cell surface. Most FcRs belong to the same family of proteins as their ligands (immunoglobulin superfamily). This review contains recent data obtained by use of monoclonal antibodies and cloning studies on FcRs and FcR-like molecules. The importance of fine specificity of receptor binding site(s) — that of the conformation of FcRs and their ligands in triggering signaling mechanisms — is analyzed. The regulatory function of membrane-bound and -released FcRs; the correlation between cell cycle, FcR expression, and release; as well as the possible mechanisms of these phenomena are discussed.  相似文献   

3.
Immune complex-induced activation of neutrophils through cell surface FcRs plays a central role in the pathogenesis of autoimmune inflammatory diseases. These diseases are often modeled using genetically modified mice. However, in contrast to the number of studies on human cells, the identity of FcRs involved in immune complex activation of murine neutrophils is at present unknown. Furthermore, little is known about the cellular functions mediated by the recently identified murine FcgammaRIV. In this study, we tested the identity of FcRs involved in the activation of neutrophils by plate-bound immune complexes, using various knockout mouse strains, function-blocking mAbs, or the combination of both approaches. Activation of murine neutrophils by immobilized IgG immune complexes was abrogated in FcR gamma-chain-deficient cells, but not by the single or combined deficiency of the gamma-chain-associated FcgammaRI and FcgammaRIII, or by blocking Abs against either FcgammaRIII or FcgammaRIV alone. However, treatment of FcgammaRIII-deficient neutrophils with FcgammaRIV-blocking Abs or simultaneous blocking of FcgammaRIII and FcgammaRIV in wild-type cells completely inhibited the immune complex-induced cellular responses. In parallel studies, activation of human neutrophils by immobilized immune complexes was abrogated by blocking Abs against either FcgammaRIIA or FcgammaRIIIB alone. Taken together, neutrophil activation by immobilized immune complexes requires the murine FcgammaRIII/FcgammaRIV or the human FcgammaRIIA/FcgammaRIIIB molecules. Although both of the two human receptors are required for this response, the two murine receptors play overlapping, redundant roles. These results promote our understanding of autoimmune diseases and identify an IgG-dependent cellular function of FcgammaRIV.  相似文献   

4.
The generation of bispecific antibodies (bsAbs) targeting two different antigens opens a new level of specificity and, compared to mAbs, improved clinical efficacy in cancer therapy. Currently, the different strategies for development of bsAbs primarily focus on IgG isotypes. Nevertheless, in comparison to IgG isotypes, IgE has been shown to offer superior tumor control in preclinical models. Therefore, in order to combine the promising potential of IgE molecules with increased target selectivity of bsAbs, we developed dual tumor-associated antigen-targeting bispecific human IgE antibodies. As proof of principle, we used two different pairing approaches - knobs-into-holes and leucine zipper–mediated pairing. Our data show that both strategies were highly efficient in driving bispecific IgE formation, with no undesired pairings observed. Bispecific IgE antibodies also showed a dose-dependent binding to their target antigens, and cell bridging experiments demonstrated simultaneous binding of two different antigens. As antibodies mediate a major part of their effector functions through interaction with Fc receptors (FcRs) expressed on immune cells, we confirmed FcεR binding by inducing in vitro mast cell degranulation and demonstrating in vitro and in vivo monocyte-mediated cytotoxicity against target antigen-expressing Chinese hamster ovary cells. Moreover, we demonstrated that the IgE bsAb construct was significantly more efficient in mediating antibody-dependent cell toxicity than its IgG1 counterpart. In conclusion, we describe the successful development of first bispecific IgE antibodies with superior antibody-dependent cell toxicity–mediated cell killing in comparison to IgG bispecific antibodies. These findings highlight the relevance of IgE-based bispecific antibodies for clinical application.  相似文献   

5.
The rosettes formed by mouse peritoneal macropahges or DCH-5 cells and TNP-erythrocytes coated with anti-TNP antibodies of different isotypes were inhibited to various extent by monosaccharides. The most effective inhibitors were N-acetylglucosamine, glucosamine, mannose and N-acetylneuraminic acid in 1–5 mmol/L concentrations. Even more efficient were glycopeptides isolated from IgG molecules. The Fc receptors (FcRs) released from DCH-5 cells during cultivation and gradually separated by affinity chromatography on immobilized IgG reacted with aggregated IgG and inhibited the rosette formation. The FcRs eluted by monosaccharides influenced mainly the number of rosettes mediated by IgA and IgE while those eluted with a glycine-HCl buffer inhibited preferentially IgG rosettes. As shown by SDS-PAGE the heterogeneity of the fraction eluted with a mixture of monosaccharides revealed one main component with an effective molar mass of 50 kg/mol. The glycine-HCl eluate contained two major components of 55 and 38 kg/mol. The IgG-Sepharose 4B bound all the fractions but only the binding of the 50 kg/mol molecule could be inhibited by monosaccharides.  相似文献   

6.
Protein-based subunit smallpox vaccines have shown their potential as effective alternatives to live virus vaccines in animal model challenge studies. We vaccinated mice with combinations of three different vaccinia virus (VACV) proteins (A33, B5, L1) and examined how the combined antibody responses to these proteins cooperate to effectively neutralize the extracellular virus (EV) infectious form of VACV. Antibodies against these targets were generated in the presence or absence of CpG adjuvant so that Th1-biased antibody responses could be compared to Th2-biased responses to the proteins with aluminum hydroxide alone, specifically with interest in looking at the ability of anti-B5 and anti-A33 polyclonal antibodies (pAb) to utilize complement-mediated neutralization in vitro. We found that neutralization of EV by anti-A33 or anti-B5 pAb can be enhanced in the presence of complement if Th1-biased antibody (IgG2a) is generated. Mechanistic differences found for complement-mediated neutralization showed that anti-A33 antibodies likely result in virolysis, while anti-B5 antibodies with complement can neutralize by opsonization (coating). In vivo studies found that mice lacking the C3 protein of complement were less protected than wild-type mice after passive transfer of anti-B5 pAb or vaccination with B5. Passive transfer of anti-B5 pAb or monoclonal antibody into mice lacking Fc receptors (FcRs) found that FcRs were also important in mediating protection. These results demonstrate that both complement and FcRs are important effector mechanisms for antibody-mediated protection from VACV challenge in mice.  相似文献   

7.
Immunoglobulins couple the recognition of invading pathogens with the triggering of potent effector mechanisms for pathogen elimination. Different immunoglobulin classes trigger different effector mechanisms through interaction of immunoglobulin Fc regions with specific Fc receptors (FcRs) on immune cells. Here, we review the structural information that is emerging on three human immunoglobulin classes and their FcRs. New insights are provided, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur. The results might also open up new possibilities for the design of therapeutic antibodies.  相似文献   

8.
IgG FcRs are important mediators of immunity and play a key role during Ab-based immunotherapy. Within the leukocyte IgG receptor family, only FcγRI is capable of IgG binding with high affinity. FcγRI exists as a complex of a ligand binding α-chain and an FcR γ-chain. The receptors' α-chain can, furthermore, elicit several functions independent of the ITAM-bearing FcR γ-chain. Functional implications of high-affinity IgG binding and mechanisms underlying FcR γ-chain-independent signaling remain unclear to this day. In this paper, we provide an overview of past literature on FcγRI and address the implications of recently described interactions between cytosolic proteins and the FcγRI α-chain, as well as cytokine-enhanced FcγRI immune complex binding. Furthermore, an analysis of potential polymorphisms within the FCGR1A gene is provided.  相似文献   

9.
J Gergely  G Sarmay 《FASEB journal》1990,4(15):3275-3283
Fc receptors (FcR) are immunoglobulin-binding molecules that enable antibodies to perform several biological functions by forming a link between specific antigen recognition and effector cells. FcRs are involved in regulating antibody production as well. Most FcRs belong to the immunoglobulin superfamily, and show structural homology with each other and with their ligands. Recent data on the structure of IgG binding FcRs obtained from monoclonal antibodies and gene cloning studies, as well as on ligand binding capacity and fine specificity of the receptor binding site (or sites), are reviewed. The binding capacity and fine specificity of receptor binding sites, as well as the structure and conformation of the immunoglobulin ligands, play important roles in triggering FcR-mediated signals. In induction of signals, the interaction of the FcR with the CH2 domain of the IgGFc is decisive. The high-affinity Fc gamma RI possess one active binding site specific for contact residues that is located at the N-proximal end of the CH2 domain and is able to mediate both binding and signal transfer. The low-affinity Fc gamma RIII has two active binding sites: the CH3 domain-specific site, which mediates only binding; and the CH2 domain-specific site, which is responsible for binding and signaling. Similarly, the low-affinity Fc gamma RII on resting B cells has one site for CH2 and another for CH3 binding. The expression, release, and fine specificity of Fc gamma RII on B cells correlates with the cell cycle.  相似文献   

10.
11.
Fc receptors (FcRs) are crucial in the immune system; they mediate a plethora of biological functions as diverse as antigen presentation, phagocytosis, cytotoxicity, induction of inflammatory cascades and modulation of immune responses. Parasites, in order to survive in the immunocompetent host, have devised ingenious methods to subvert this important aspect of the immune response. This article discusses the current thinking on FcRs, their role in immunity to parasites, and immune evasion strategies employed by parasites in their attempt to neutralize the important immune defense mechanisms mediated by these molecules.  相似文献   

12.
Human IgG4 antibodies directed against phospholipase A, the P1 antigen from Dermatophago?des pteronyssinus extracts, and cat albumin were found unable to cross-link antigen. Previously, it was demonstrated that IgG4 antibodies, in contrast to IgG1 antibodies, did not cross-link Sepharose-bound antigen and antigen added in solution. To eliminate the possibility that this phenomenon was caused by preferential binding of both IgG4 Fab fragments to the solid-phase-bound antigen, cross-linking of antigen was studied in a fluid-phase system. In this test, incapability of IgG4 antibodies to bridge two antigens was also found. As a result of such a phenomenon, it is expected that immune complexes formed by IgG4 antibodies will be considerably smaller than complexes formed by IgG1. This was confirmed by analysis of the molecular size profiles of IgG1- and IgG4-containing immune complexes in sucrose-density gradients. Moreover, IgG1 was able to precipitate antigen in a radioimmunoprecipitation test, whereas precipitation was not demonstrable by the same amount of IgG4 antibodies. Even 3% polyethylene glycol 8,000 did not precipitate the small IgG4-containing immune complexes efficiently. The antibodies studied were of a high-affinity type, and there was no significant difference in association constants between IgG1 and IgG4 antibodies. Therefore, we were not able to confirm observations reported in the literature that the IgG4 subclass is associated with a low-affinity antibody response; probably, the affinity of the IgG4 antibodies was underestimated by other investigators because of the polyethylene glycol precipitation technique used to separate antibody-bound and free antigen. Our findings stress the point that IgG4 antibodies take a special place in the immune response upon chronic exposure to antigen.  相似文献   

13.
Fc受体是免疫细胞表面一种重要受体分子,通过与免疫球蛋白Fc段结合触发多种生物学功能,是联系体液免疫和细胞免疫的桥梁。部分硬骨鱼中已经发现了Fc受体,在斑马鱼、斑点又尾鲴和鲤鱼中都克隆到了Fc受体的γ亚基,在鲨鱼和大西洋鲑中证明有能够与免疫球蛋白结合的Fc受体存在,并在斑点叉尾鲴、河豚和虹鳟中存在着类似α亚基的Fc受体。对鱼类Fc受体的发现和研究必将为了解鱼类的免疫机制及免疫进化提供重要的资料。  相似文献   

14.
The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. FcγRIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of FcγRIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of FcγRIIa (FcγRIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence FcγRIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for FcγRIIa (IV.3), FcγRIIb (X63-21), and a pan FcγRII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of FcγRIIa and FcγRIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of FcγRIIa-HR binds Ag-Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.  相似文献   

15.
Monoclonal or polyclonal antibodies directed toward determinants on limited structures of bovine serum albumin (BSA) (P505-582) were shown to regulate the entire anti-bovine serum albumin (BSA) immune response when passively administered to mice 24 hr prior to immunization. Regulation was observed as suppression of the humoral IgG immune response toward all BSA determinants except those on fragment P505-582. By Day 21 suppression of humoral response was most pronounced toward determinants present on the carboxy terminal end of the molecule (N 307-582). These observations demonstrate that monoclonal antibodies directed against a single determinant on a protein molecule have the capacity to regulate the immune response to a multiplicity of determinants present on the same protein. The data lend support to concepts of antibody-induced regulation by induction of suppressor cells or idiotype recognition.  相似文献   

16.
Complement-mediated solubilization of immune precipitates prepared with HSA and rat IgG anti-HSA has been quantitatively analyzed. Early and late IgG anti-HSA antibodies were obtained 27 and 49 days after immunization, respectively. Immune precipitates prepared with early IgG anti-HSA were solubilized by rat serum to a larger extent than complexes prepared with late IgG anti-HSA. The affinities for HSA of the early and late antibodies were not significantly different. The quantitative differences in solubilization were neither due to differences in the Ab/Ag ratios of the immune precipitates, nor appeared to be brought about by changes in the distribution of the antibodies over the IgG sub-classes. The avidity of the late IgG anti-HSA antibodies was higher than the avidity of the early IgG antibodies. Presumably, the avidity of the antibodies greatly affected the complement-mediated solubilization of the immune precipitates. In addition, the solubilization was found to be dependent on the conditions employed to prepare the immune precipitates.  相似文献   

17.
Numerous studies have demonstrated that targeting Ag to Fc receptors (FcR) on APCs can enhance humoral and cellular immunity. However, studies are lacking that examine both the use of FcR-targeting in generating immune protection against infectious agents and the use of FcRs in the induction of mucosal immunity. Francisella tularensis is a category A intracellular mucosal pathogen. Thus, intense efforts are underway to develop a vaccine against this organism. We hypothesized that protection against mucosal infection with F. tularensis would be significantly enhanced by targeting inactivated F. tularensis live vaccine strain (iFt) to FcRs at mucosal sites, via intranasal immunization with mAb-iFt complexes. These studies demonstrate for the first time that: 1) FcR-targeted immunogen enhances immunogen-specific IgA production and protection against subsequent infection in an IgA-dependent manner, 2) FcgammaR and neonatal FcR are crucial to this protection, and 3) inactivated F. tularensis, when targeted to FcRs, enhances protection against the highly virulent SchuS4 strain of F. tularensis, a category A biothreat agent. In summary, these studies show for the first time the use of FcRs as a highly effective vaccination strategy against a highly virulent mucosal intracellular pathogen.  相似文献   

18.
Natural and immune human antibodies reactive with heat-labile and heat-stable antigens of virulent Neisseria gonorrhoeae were studied by use of an indirect fluorescent-antibody (IFA) procedure. The immunoglobulin class of the reactive antibodies was identified by using fluorescein-conjugated antisera specific for human IgG, IgA, or IgM in the IFA procedure. The effects of heat and mercaptoethanol on IFA reactivities were also studied. It appeared that antibodies of the IgG, IgM, and IgA classes present in the sera of both infected persons (immune antibodies) and normal persons with no history of gonococcal infection (natural antibodies) react with heat-stable somatic antigens. Immune IgG antibodies, however, were distinguishable from natural IgG antibodies by their ability to recognize heat-labile surface antigens. The distinction between natural and immune IgM antibodies was less obvious. IgM antibodies from both infected and normal persons appeared to react with heat-labile antigens. Some, but not all, infected persons had immune IgA antibodies to heat-labile as well as to heat-stable antigens. Treatment of sera with mercaptoethanol had no effect on IgG antibodies. The IFA activity of IgM antibodies was decreased, but not abolished. The effects of mercaptoethanol on IgA antibodies were variable. Some sera showed a decrease in IgA titer, and others showed an increase in IgA activity to certain antigens. Immune IgG antibodies were more resistant to heating than were natural IgG antibodies. Natural and immune IgM antibodies appeared equally sensitive to heating. IgA activity, on the other hand, was increased by heating sera at 60 C, but was decreased at higher temperatures. Thus, it appears that natural and immune human IgG antibodies to N. gonorrhoeae may be distinguished by their interactions with heat-labile antigens and by their resistance to heating.  相似文献   

19.
M J Corbel  C A Day 《Sabouraudia》1978,16(1):23-33
Pregnant sheep inoculated with Aspergillus fumigatus conidia developed agglutinating and precipitating antibodies for mycelial antigens. The agglutinins were initially exclusively of the IgM class, but were later supplemented by IgG antibodies, although IgM production was usually sustained throughout the serological response. Precipitins active in the immunodiffusion test were of the IgG class. They developed later in the immune response than agglutinins and declined more rapidly. The precipitins and IgG agglutinins were more closely associated with recent active infection than IgM agglutinins.  相似文献   

20.
Abstract In Manarintsoa, near Antananarivo, Madagascar, two groups of patients were defined in terms of malaria clinical immune status: Group MA+ consisted of 36 patients who suffered from between one to four malaria attacks (MA) during the 20-week study, and Group MA who comprised of 48 persons who did not have any malaria attacks during this time. In group MA+, IgM and IgG antibody levels to Plasmodium falciparum exoantigens (E-Ag) were inversely related to the number of malaria attacks. The level of IgM antibodies were significantly higher in group MA+. In contrast, IgG, IgG1, IgG2, IgG3 and IgG4 antibodies to E-Ag were significantly higher in group MA. The level of IgG1 antibodies was inversely correlated, and IgG2 antibodies were positively correlated to the number of malaria attacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号