首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
There is considerable evidence that purines are vasoactive molecules involved in the regulation of blood flow. Adenosine is a well known vasodilator that also acts as a modulator of the response to other vasoactive substances. Adenosine exerts its effects by interacting with adenosine receptors. These are metabotropic G-protein coupled receptors and include four subtypes, A(1), A(2A), A(2B) and A(3). Adenosine triphosphate (ATP) is a co-transmitter in vascular neuroeffector junctions and is known to activate two distinct types of P2 receptors, P2X (ionotropic) and P2Y (metabotropic). ATP can exert either vasoconstrictive or vasorelaxant effects, depending on the P2 receptor subtype involved. Splanchnic vascular beds are of particular interest, as they receive a large fraction of the cardiac output. This review focus on purinergic receptors role in the splanchnic vasomotor control. Here, we give an overview on the distribution and diversity of effects of purinergic receptors in splanchnic vessels. Pre- and post-junctional receptormediated responses are summarized. Attention is also given to the interactions between purinergic receptors and other receptors in the splanchnic circulation.  相似文献   

3.
For many years, ATP and adenosine have been implicated in movement regulation of the gastrointestinal tract. They act through three major receptor subtypes: adenosine or P1 receptors, P2X receptors and P2Y receptors. Each of these major receptor types can be subdivided into several different classes and is widely distributed amongst various neurons, muscle types, glia and interstitial cells that regulate intestinal functions. Several key roles for the different receptors and their endogenous ligands have been identified in physiological and pharmacological studies. For example, adenosine acting at A(1) receptors appears to inhibit intestinal motility in various pathological conditions. Similarly, ATP acting at P2Y receptors is an important component of inhibitory neuromuscular transmission, acting as a cotransmitter with nitric oxide. ATP acting at P2X and P2Y(1) receptors is important for synaptic transmission in simple descending excitatory and inhibitory reflex pathways. Some P2Y receptor subtypes prefer uridine nucleotides over purine nucleotides. Thus, roles for UTP and UDP as enteric transmitters in place of ATP cannot be excluded. ATP also appears to be important for sensory transduction, especially in chemosensitive pathways that initiate local inhibitory reflexes. Despite this evidence, data are lacking about the roles of either adenosine or ATP in more complex motility patterns such as segmentation or the interdigestive migrating motor complex. Clarification of roles for purinergic transmission in these common, but understudied, motility patterns will depend on the use of subtype-specific antagonists that in some cases have not yet been developed.  相似文献   

4.
Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy in immunolabelled transverse sections of muscle biopsies. The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis. P2X(1) receptors were expressed in intracellular vesicles and sarcolemma. P2Y(4) receptors were present in sarcolemma. P2Y(11) receptors were abundantly and diffusely expressed intracellularly and were more explicitly expressed in type I than in type II fibres, whereas P2X(1) and P2Y(4) showed no fibre-type specificity. Both diabetic patients and healthy controls showed similar distribution of receptors. The current study demonstrates that purinergic receptors are located intracellularly in human skeletal muscle fibres. The similar cellular localization of receptors in healthy and diabetic subjects suggests that diabetes is not associated with an altered distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.  相似文献   

5.
Purines such as ATP and adenosine participate in synaptic transmission in the enteric nervous system as neurotransmitters or neuromodulators. Purinergic receptors are localized on the cell bodies or nerve terminals of different functional classes of enteric neurons and, with other receptors, form unique receptor complements. Activation of purinergic receptors can regulate neuronal activity by depolarization, by regulating intracellular calcium, or by modulating second messenger pathways. Purinergic signaling between enteric neurons plays an important role in regulating specific enteric reflexes and overall gastrointestinal function. In the present article, we review evidence for purine receptors in the enteric nervous system, including P1 (adenosine) receptors and P2 (ATP) receptors. We will explore the role they play in mediating fast and slow synaptic transmission and in presynaptic inhibition of transmission. Finally, we will examine the molecular properties of the native receptors, their signaling mechanisms, and their role in gastrointestinal pathology.  相似文献   

6.
The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.  相似文献   

7.
We provide both molecular and pharmacological evidence that the metabotropic, purinergic, P2Y(6), P2Y(12) and P2Y(13) receptors and the ionotropic P2X(4) receptor contribute strongly to the rapid calcium response caused by ATP and its analogues in mouse microglia. Real-time PCR demonstrates that the most prevalent P2 receptor in microglia is P2Y(6) followed, in order, by P2X(4), P2Y(12), and P2X(7) = P2Y(13). Only very small quantities of mRNA for P2Y(1), P2Y(2), P2Y(4), P2Y(14), P2X(3) and P2X(5) were found. Dose-response curves of the rapid calcium response gave a potency order of: 2MeSADP>ADP=UDP=IDP=UTP>ATP>BzATP, whereas A2P4 had little effect. Pertussis toxin partially blocked responses to 2MeSADP, ADP and UDP. The P2X(4) antagonist suramin, but not PPADS, significantly blocked responses to ATP. These data indicate that P2Y(6), P2Y(12), P2Y(13) and P2X receptors mediate much of the rapid calcium responses and shape changes in microglia to low concentrations of ATP, presumably at least partly because ATP is rapidly hydrolyzed to ADP. Expression of P2Y(6), P2Y(12) and P2Y(13) receptors appears to be largely glial in the brain, so that peripheral immune cells and CNS microglia share these receptors. Thus, purinergic, metabotropic, P2Y(6), P2Y(12), P2Y(13) and P2X(4) receptors might share a role in the activation and recruitment of microglia in the brain and spinal cord by widely varying stimuli that cause the release of ATP, including infection, injury and degeneration in the CNS, and peripheral tissue injury and inflammation which is signaled via nerve signaling to the spinal cord.  相似文献   

8.
Chronic gastrointestinal inflammation is one of the most common types of inflammatory process which affects humans. It is diverse in aetiology, pathogenesis and manifestation. There are also features of chronic inflammation at different sites within the gastrointestinal tract which provide a common thread in terms of the approaches which may be used in investigating these intriguing processes. This paper provides an overview of the mucosal changes in chronic gastrointestinal inflammation. Conserved and variable features of inflammation at different sites extending from the oral cavity to the rectum are highlighted. The involvement of different inflammatory cell types within any diagnostic entity is considered and the progression from an acute to chronic inflammatory condition explored. Important issues in the maintenance of a chronic inflammatory state are the balance between pro- and anti-inflammatory pressures, the driving force behind the inflammation and immune response that is occurring and the mechanisms for curtailment of unwanted or harmful responses which may damage the host. Thus inflammation is likely to result when there is persistence of a driving force and/or imbalance in the pro- and anti-inflammatory mechanisms in the tissue involved.  相似文献   

9.
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5′-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.  相似文献   

10.
The purinergic P2X(7) receptor (P2X(7)R) can mediate glutamate release from cultured astrocytes. Using patch clamp recordings, we investigated whether P2X(7)Rs have the same action in hippocampal astrocytes in situ. We found that 2- and 3-O-(4-benzoylbenzoyl)ATP (BzATP), a potent, although unselective P2X(7)R agonist, triggers two different glutamate-mediated responses in CA1 pyramidal neurons; they are transient inward currents, which have the kinetic and pharmacological properties of previously described slow inward currents (SICs) due to Ca(2+)-dependent glutamate release from astrocytes, and a sustained tonic current. Although SICs were unaffected by P2X(7)Rs antagonists, the tonic current was inhibited, was amplified in low extracellular Ca(2+), and was insensitive to glutamate transporter and hemichannel inhibitors. BzATP triggered in astrocytes a large depolarization that was inhibited by P2X(7)R antagonists and amplified in low Ca(2+). In low Ca(2+) BzATP also induced lucifer yellow uptake into a subpopulation of astrocytes and CA3 neurons. Our results demonstrate that purinergic receptors other than the P2X(7)R mediate glutamate release that evokes SICs, whereas activation of a receptor that has features similar to the P2X(7)R, mediates a sustained glutamate efflux that generates a tonic current in CA1 neurons. This sustained glutamate efflux, which is potentiated under non-physiological conditions, may have important pathological actions in the brain.  相似文献   

11.
Wound healing is an appropriate response to inflammation and tissue injury in the gastrointestinal tract. If wound healing responses are excessive, perpetuated, or prolonged, they lead to fibrosis, distortion of tissue architecture, and loss of function. This introductory editorial and the minireviews or reviews in this themes series highlight the diversity in severity and location of fibrosis in response to gastrointestinal inflammation. The multiplicity of cellular and molecular mediators and new players, including stem cells or extracellular matrix-producing cells derived from nonmesenchymal cell types, is reviewed. Comparisons of inflammation-induced fibrosis across organ systems and the need for integrated and systems-based molecular approaches, new imaging modalities, well-characterized animal models, cell culture models, and improved diagnostic or predictive markers are reviewed. To date, intestinal fibrosis has received much less attention than inflammation in terms of defining mechanisms and underlying causes. This themes series aims to illustrate the importance of research in this area in gastrointestinal health and disease.  相似文献   

12.
We recently showed that the physiological compound ATP simultaneously inhibited TNF-alpha and stimulated IL-10 release in LPS-PHA stimulated blood. The purpose of the present study was to determine the mechanism involved in the concerted modulatory effect of ATP on TNF-alpha and IL-10. Incubation of blood with ATP in the presence of selective P2 receptor antagonists showed that the stimulatory effect of ATP on IL-10 release was completely annihilated by both 2-MeSAMP (a P2Y12/13 receptor antagonist) and PSB-0413 (a P2Y12 receptor antagonist). On the other hand, the inhibitory effect of ATP on TNF-alpha release was completely reversed by 5'-AMPS (a P2Y11 receptor antagonist) as well as by H-89, an inhibitor of cAMP-activated PKA. The concerted inhibition by ATP of TNF-alpha release via P2Y11 activation and stimulation of IL-10 release via P2Y12 activation implicates a novel approach towards immunomodulation by altering the balance among pro- and anti-inflammatory cytokines.  相似文献   

13.
The nucleotide-binding and oligomerization domain, leucine-rich repeat (also known as NOD-like receptors, both abbreviated to NLR) family of intracellular pathogen recognition receptors are increasingly being recognized to play a pivotal role in the pathogenesis of a number of rare monogenic diseases, as well as some more common polygenic conditions. Bacterial wall constituents and other cellular stressor molecules are recognized by a range of NLRs, which leads to activation of the innate immune response and upregulation of key proinflammatory pathways, such as IL-1β production and translocation of nuclear factor-κB to the nucleus. These signalling pathways are increasingly being targeted as potential sites for new therapies. This review discusses the role played by NLRs in a variety of inflammatory diseases and describes the remarkable success to date of these therapeutic agents in treating some of the disorders associated with aberrant NLR function.  相似文献   

14.
This review focusses on the roles that membrane receptors and their transducers play in the physiology and pathology of the gastrointestinal tract. The multifactorial: factorial regulation of mucosal growth and function is discussed in relation to the heterogeneity of exocrine and endocrine populations that originate from progenitor cells in stomach and intestine.  相似文献   

15.
16.
17.
Macrophages play a significant role in HIV infection, viral rebound, and the development of AIDS. However, the function of host proteins in viral replication is incompletely characterized in macrophages. Purinergic receptors P2X and P2Y are major components of the macrophage immune response to pathogens, inflammation, and cellular damage. We demonstrate that these receptors are necessary for HIV infection of primary human macrophages. Inhibition of purinergic receptors results in a significant reduction in HIV replication in macrophages. This inhibition is independent of viral strain and is dose dependent. We also identify that P2X(1), P2X(7), and P2Y(1) receptors are involved in viral replication. We show that P2X(1), but not P2X(7) or P2Y(1), is necessary for HIV entry into macrophages. We demonstrate that interaction of the HIV surface protein gp120 with macrophages stimulates an increase in ATP release. Thus, we propose that HIV's binding to macrophages triggers a local release of ATP that stimulates purinergic receptors and facilitates HIV entry and subsequent stages of viral replication. Our data implicate a novel role for a family of host proteins in HIV replication in macrophages and suggest new therapeutic targets to reduce the devastating consequences of HIV infection and AIDS.  相似文献   

18.
Changes in the luminal contents of the gastrointestinal tract modulate gastrointestinal functions, including absorption of nutrients, food intake, and protection against harmful substances. The current notion is that mucosal enteroendocrine cells act as primary chemoreceptors by releasing signaling molecules in response to changes in the luminal environment, which in turn activate nerve terminals. The recent discovery that taste receptors and G protein subunits alpha-gustducin and alpha-transducin, involved in gustatory signal transduction, are expressed in the gastrointestinal mucosa supports the concept of a chemosensory machinery in the gastrointestinal tract. An understanding of luminal sensing processes responsible for the generation of the appropriate functional response to specific nutrients and nonnutrients is of clinical importance since aberrant or unsteady responses to changes in luminal contents might result in disease states ranging from intoxication to feeding disorders and inflammation. The purpose of this theme article is to discuss the functional implications of bitter taste signaling molecules in the gastrointestinal tract deduced by their localization in selected populations of epithelial cells and their relationship with neural pathways responsible for the generation of specific responses to luminal contents.  相似文献   

19.
Inflammation and cancer are the two major disorders in the gastrointestinal tract. They are causally related in their pathogenesis. It is important to study animal models' causal relationship and, in particular, to discover new therapeutic agents for such diseases. There are several criteria for these models in order to make them useful in better understanding the etiology and treatment of the said diseases in humans. In this regard, animal models should be similar as possible to human diseases and also be easy to produce and reproducible and also economic to allow a continuous replication in different laboratories. In this review, we summarize the various animal models for inflammatory and cancerous disorders in the upper and lower gastrointestinal tract. Experimental approaches are as simple as by giving a single oral dose of alcohol or other noxious agents or by injections of multiple dosages of ulcer inducing agents or by parenteral administration or in drinking water of carcinogens or by modifying the genetic makeups of animals to produce relatively long-term pathological changes in particular organs. With these methods they could induce consistent inflammatory responses or tumorigenesis in the gastrointestinal mucosa. These animal models are widely used in laboratories in understanding the pathogenesis as well as the mechanisms of action for therapeutic agents in the treatment of gastrointestinal inflammation and cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号