首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
There is now evidence that major depression (MDD) is accompanied by an activation of the inflammatory response system (IRS) and that pro-inflammatory cytokines and lipopolysacharide (LPS) may induce depressive symptoms. The aim of the present study was to examine whether an increased gastrointestinal permeability with an increased translocation of LPS from gram negative bacteria may play a role in the pathophysiology of MDD. Toward this end, the present study examines the serum concentrations of IgM and IgA against LPS of the gram-negative enterobacteria, Hafnia Alvei, Pseudomonas Aeruginosa, Morganella Morganii, Pseudomonas Putida, Citrobacter Koseri, and Klebsielle Pneumoniae in MDD patients and normal controls. We found that the prevalences and median values for serum IgM and IgA against LPS of enterobacteria are significantly greater in patients with MDD than in normal volunteers. These differences are significant to the extent that a significant diagnostic performance is obtained, i.e. the area under the ROC curve is 90.1%. The symptom profiles of increased IgM and IgA levels are fatigue, autonomic and gastro-intestinal symptoms and a subjective feeling of infection. The results show that intestinal mucosal dysfunction characterized by an increased translocation of gram-negative bacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. It is suggested that the increased LPS translocation may mount an immune response and thus IRS activation in some patients with MDD and may induce specific "sickness behaviour" symptoms. It is suggested that patients with MDD should be checked for leaky gut by means of the IgM and IgA panel used in the present study and accordingly should be treated for leaky gut.  相似文献   

2.
There is now some evidence that chronic fatigue syndrome (CFS) is accompanied by signs of oxidative stress and by a decreased antioxidant status. The aim of the present study was to examine whether CFS is accompanied by an immune response to neoepitopes of a variety of modified lipids and proteins indicating damage caused by oxidative and nitrosative stress. Toward this end we examined serum antibodies to fatty acids (oleic, palmitic and myristic acid), by-products of lipid peroxidation, i.e. azelaic acid and malondialdehyde (MDA), acetylcholine, S-farnesyl-L-cysteine, and N-oxide modified amino-acids in 14 patients with CFS, 14 subjects with partial CFS and 11 normal controls. We found that the prevalences and mean values for the serum IgM levels directed against oleic, palmitic and myristic acid, MDA, azelaic acid, S-farnesyl-L-cysteine, and the N-oxide derivates, nitro-tyrosine, nitro-phenylalanine, nitro-arginine, nitro-tryptophan, and nitro-cysteinyl were significantly greater in CFS patients than in normal controls, whereas patients with partial CFS took up an intermediate position. There were significant and positive correlations between the serum IgM levels directed against fatty acids, MDA and azelaic acid and the above N-oxide-derivates and the severity of illness (as measured by the FibroFatigue scale) and symptoms, such as aches and pain, muscular tension and fatigue. The results show that CFS is characterized by an IgM-related immune response directed against disrupted lipid membrane components, by-products of lipid peroxidation, S-farnesyl-L-cysteine, and NO-modified amino-acids, which are normally not detected by the immune system but due to oxidative and nitrosative damage have become immunogenic.  相似文献   

3.
Major depression and chronic fatigue syndrome (CFS) are accompanied by signs of oxidative and nitrosative stress (O&NS) and an inflammatory response. Phosphatidyl inositol (Pi) is thought to play a role in depression. The aim of the present study is to examine whether depression and CFS are characterized by an IgM-mediated immune response directed against Pi. Toward this end, this study examines the serum IgM antibodies directed against Pi in 14 patients with major depression, 14 patients with CFS, 14 subjects with partial CFS, and in 11 normal controls. We found that the prevalence and mean value for the serum IgM levels directed against Pi were significantly greater in patients with major depression and CFS than in normal controls and patients with partial CFS. There were significant and positive correlations between serum IgM levels directed against Pi and two symptoms of the FibroFatigue Scale, i.e. fatigue and depression. The results show that an IgM-related immune response directed against Pi may occur in both depression and CFS and may play a role in the pathophysiology of the key symptom of CFS and major depression. It is suggested that the above disorders in Pi result from increased O&NS in both depression and CFS. Autoanti-Pi antibodies may have biological effects, for example, by changing inositol 1,4,5-triphosphate (IP3), phosphatidylinositol-4,5-bisphosphate (PIP2), diacylglycerol and phosphatidylinositol-3,4,5-triphosphate (PIP3) production, thus interfering with intracellular signalling processes. Future research in major depression and CFS should focus on the functional consequences of the immune responses directed against Pi.  相似文献   

4.
Evidence indicates that major depression is accompanied by increased translocation of gut commensal Gram-negative bacteria (leaky gut) and consequent activation of oxidative and nitrosative (O&NS) pathways. This present study examined the associations among chronic apical periodontitis (CAP), root canal endotoxin levels (lipopolysaccharides, LPS), O&NS pathways, depressive symptoms, and quality of life. Measurements included advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), lipid peroxides (LOOH), ?sulfhydryl (SH) groups, total radical trapping antioxidant parameter (TRAP), and paraoxonase (PON)1 activity in participants with CAP, with and without depression, as well as healthy controls (no depression, no CAP). Root canal LPS levels were positively associated with CAP, clinical depression, severity of depression (as measured with the Hamilton Depression Rating Scale (HDRS) and the Beck Depression Inventory) and O&NS biomarkers, especially NOx and TRAP. CAP-related depression was accompanied by increased levels of NOx, LOOH, AOPP, and TRAP. In CAP participants, there was a strong correlation (r = 0.734, p < 0.001) between root canal LPS and the HDRS score. There were significant and positive associations between CAP or root canal endotoxin with the vegetative and physio-somatic symptoms of the HDRS as well as a significant inverse association between root canal endotoxin and quality of life with strong effects on psychological, environmental, and social domains. It is concluded that increased root canal LPS accompanying CAP may cause depression and a lowered quality of life, which may be partly explained by activated O&NS pathways, especially NOx thereby enhancing hypernitrosylation and thus neuroprogressive processes. Dental health and “leaky teeth” may be intimately linked to the etiology and course of depression, while significantly impacting quality of life.  相似文献   

5.
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease characterized by intense and debilitating fatigue not due to physical activity that has persisted for at least 6 months, post-exertional malaise, unrefreshing sleep, and accompanied by a number of secondary symptoms, including sore throat, memory and concentration impairment, headache, and muscle/joint pain. In patients with post-exertional malaise, significant worsening of symptoms occurs following physical exertion and exercise challenge serves as a useful method for identifying biomarkers for exertion intolerance. Evidence suggests that intestinal dysbiosis and systemic responses to gut microorganisms may play a role in the symptomology of ME/CFS. As such, we hypothesized that post-exertion worsening of ME/CFS symptoms could be due to increased bacterial translocation from the intestine into the systemic circulation. To test this hypothesis, we collected symptom reports and blood and stool samples from ten clinically characterized ME/CFS patients and ten matched healthy controls before and 15 minutes, 48 hours, and 72 hours after a maximal exercise challenge. Microbiomes of blood and stool samples were examined. Stool sample microbiomes differed between ME/CFS patients and healthy controls in the abundance of several major bacterial phyla. Following maximal exercise challenge, there was an increase in relative abundance of 6 of the 9 major bacterial phyla/genera in ME/CFS patients from baseline to 72 hours post-exercise compared to only 2 of the 9 phyla/genera in controls (p = 0.005). There was also a significant difference in clearance of specific bacterial phyla from blood following exercise with high levels of bacterial sequences maintained at 72 hours post-exercise in ME/CFS patients versus clearance in the controls. These results provide evidence for a systemic effect of an altered gut microbiome in ME/CFS patients compared to controls. Upon exercise challenge, there were significant changes in the abundance of major bacterial phyla in the gut in ME/CFS patients not observed in healthy controls. In addition, compared to controls clearance of bacteria from the blood was delayed in ME/CFS patients following exercise. These findings suggest a role for an altered gut microbiome and increased bacterial translocation following exercise in ME/CFS patients that may account for the profound post-exertional malaise experienced by ME/CFS patients.  相似文献   

6.
Gut barrier dysfunction may occur in short bowel syndrome (SBS). We hypothesized that systemic exposure to flagellin and lipopolysaccharide (LPS) in SBS might regulate specific immune responses. We analyzed serial serum samples obtained from parenteral nutrition (PN)-dependent patients with SBS versus non-SBS control serum. Serum from 23 adult SBS patients was obtained at baseline and 4, 8, 12, 16, 20, and 24 wk in a trial of modified diet with or without growth hormone. Control serum was obtained from 48 healthy adults and 37 adults requiring PN during critical illness. Serum flagellin was detected by an ELISA recognizing an array of gram-negative flagellins, and LPS was detected by limulus assay. Serum flagellin- and LPS-specific immunoglobulin levels (IgM, IgA, and IgG) were determined by ELISA. Serum flagellin and LPS were undetectable in control subjects. In contrast, serum flagellin, LPS, or both were detected in 14 SBS patients (61%) during one or more time points [flagellin alone, 5/23 (22%); LPS alone, 6/23 (26%); or flagellin + LPS, 3/23 (13%)]. Flagellin-specific serum IgM, IgA, and IgG levels were markedly increased in SBS patients compared with both control populations and remained elevated during the 6-mo study period. LPS-specific IgA was significantly higher in SBS patients compared with healthy controls; LPS-specific IgM, IgA, and IgG levels each decreased over time in association with PN weaning. We conclude that adults with PN-dependent SBS are systemically exposed to flagellin and LPS, presumably from the gut lumen. This likely regulates innate and adaptive immune responses to these specific bacterial products.  相似文献   

7.
When stored fish or some fish products were tested for the presence of Clostridium botulinum toxin, nonspecific toxic reactions in mice often occurred, rendering the bioassay inconclusive. The nonspecific toxic reactions were mediated by the gram-negative microbiota, inherent to the fish, which were the source of lethal, heat-stable endotoxins. The treatment of assay samples with bovine serum eliminated nonspecific reactions through the interaction of constituent serum immunoglobulin M (IgM) with endotoxic material. Removal of IgM from bovine serum through treatment with protein A or concanavalin A resulted in a loss of protective activity.  相似文献   

8.
When stored fish or some fish products were tested for the presence of Clostridium botulinum toxin, nonspecific toxic reactions in mice often occurred, rendering the bioassay inconclusive. The nonspecific toxic reactions were mediated by the gram-negative microbiota, inherent to the fish, which were the source of lethal, heat-stable endotoxins. The treatment of assay samples with bovine serum eliminated nonspecific reactions through the interaction of constituent serum immunoglobulin M (IgM) with endotoxic material. Removal of IgM from bovine serum through treatment with protein A or concanavalin A resulted in a loss of protective activity.  相似文献   

9.
Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance.  相似文献   

10.
This paper hypothesizes that inflammatory, oxidative and nitrosative (IO&NS) pathways, and an increased translocation of LPS from gram-negative bacteria are causally related to depression following external (psychological) and internal (organic) stressors and that IO&NS pathways are novel targets for antidepressant development. We review that depression is accompanied by an inflammatory reaction as indicated by an increased production of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta), IL-6, tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN)-gamma. These cytokines are stress-sensitive and may cause depressive behaviors. The latter may be induced by an increased catabolism of tryptophan, the precursor of serotonin, to neurotoxic TRYCATs (tryptophan catabolites along the indoleamine oxidase pathway). Inflammatory biomarkers are detected in animal models of depression. Newly developed animal models of depression are based on induced inflammation. Most if not all antidepressants have specific anti-inflammatory effects. Anti-inflammatory compounds may augment the clinical efficacy of antidepressants. Depression is also accompanied by an IgM-related (auto)immune response directed against disrupted lipid membrane components, such as phosphatidyl-inositol, by-products of lipid peroxidation, e.g. azelaic acid and malondialdehyde, and NO-modified amino-acids, which are normally not detected by the immune system but due to damage caused by O&NS have become immunogenic. Increased translocation of lipopolysaccharide from gram-negative bacteria, which may be induced by internal and external stressors, may further aggravate the induced IO&NS pathways.  相似文献   

11.
Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s) and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress), and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP). Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness) than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alpha-synuclein (the hallmark of PD), as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier diagnosis of PD and suggests potential therapeutic targets in PD subjects. TRIAL REGISTRATION: Clinicaltrials.gov NCT01155492.  相似文献   

12.
Frequency of gram-negative bacteria is markedly enhanced in inflamed gut, leading to augmented LPS in the intestine. Although LPS in the intestine is considered harmless and, rather, provides protective effects against epithelial injury, it has been suggested that LPS causes intestinal inflammation, such as necrotizing enterocolitis. Therefore, direct effects of LPS in the intestine remain to be studied. In this study, we examine the effect of LPS in the colon of mice instilled with LPS by rectal enema. We found that augmented LPS on the luminal side of the colon elicited inflammation in the small intestine remotely, not in the colon; this inflammation was characterized by body weight loss, increased fluid secretion, enhanced inflammatory cytokine production, and epithelial damage. In contrast to the inflamed small intestine induced by colonic LPS, the colonic epithelium did not exhibit histological tissue damage or inflammatory lesions, although intracolonic LPS treatment elicited inflammatory cytokine gene expression in the colon tissues. Moreover, we found that intracolonic LPS treatment substantially decreased the frequency of immune-suppressive regulatory T cells (CD4(+)/CD25(+) and CD4(+)/Foxp3(+)). We were intrigued to find that LPS-promoted intestinal inflammation is exacerbated in immune modulator-impaired IL-10(-/-) and Rag-1(-/-) mice. In conclusion, our results provide evidence that elevated LPS in the colon is able to cause intestinal inflammation and, therefore, suggest a physiological explanation for the importance of maintaining the balance between gram-negative and gram-positive bacteria in the intestine to maintain homeostasis in the gut.  相似文献   

13.
IgA, IgG and IgM antibodies against Yersinia Yop proteins, Yersinia LPS and Salmonella LPS from different serogroups were determined by enzyme-linked immunosorbent assay (ELISA) in a 885 serum samples and 92 synovial fluids. The control group consisted of 200 healthy blood donors. Compared with control subjects, patients with arthritis showed significantly increased titres of antibodies against Yersinia Yop, Yersinia LPS and Salmonella LPS appropriately in 21.7%, 44.0% and 56.0% serum samples. The prevalence of positive antibody levels was highest in Yersinia serogroup O3 and Salmonella serogroup B and D antibodies. The IgA titres were found to be much higher in adults than in children and youngsters but IgM titres consequently decreased with age. Investigation of synovial fluids obtained from patients with arthritis showed that Yersinia and Salmonella antibodies in synovial fluid mirror those in serum by concentration, by specificity and by distribution in classes.  相似文献   

14.
Autoimmune hepatitis (AIH) is an immune-mediated type of chronic liver inflammation accompanied by intestinal flora imbalance. Probiotics have been reported to ameliorate imbalances in the intestinal flora. This study aimed to investigate the effects of compound probiotic in the AIH mouse model. AIH mice were gavaged with compound probiotic and injected intraperitoneally with dexamethasone (dex) for 42 days. The results showed that these treatments suppressed hepatic inflammatory cell infiltration, serum transaminase, and Th1 and Th17 cells. However, Treg cells were increased only in the probiotics group, which indicates an immunomodulatory role of the compound probiotic. The compound probiotic maintained intestinal barrier integrity, blocked lipopolysaccharide (LPS) translocation, and inhibited the activation of the TLR4/NF-κB pathway and the production of inflammatory factors in the liver and ileum. Moreover, the compound probiotic treatment increased the abundance of beneficial bacteria and reduced the abundance of potentially harmful bacteria in gut. Compound probiotic may improve ileal barrier function while increasing the diversity of the intestinal flora, blocking the translocation of gut-derived LPS to the liver and therefore preventing activation of the TLR4/NF-κB pathway. The resulting inhibition of pro-inflammatory factor production facilitates AIH remission.  相似文献   

15.
Lipopolysaccharide (LPS, endotoxin) is an important structural constituent of the membrane of gram-negative bacteria with a wide range of biological effects. It can activate blood platelets. The purpose of present study was to determine the direct effect of endotoxins from Proteus mirabilis, differing significantly in their composition, on the generation of superoxide radicals and thiobarbituric acid reactive substances (TBARS) in blood platelets. Superoxide radicals were measured by means of superoxide dismutase-inhibitable reduction of cytochrome C. The TBARS determination (malonyldialdehyde) was used as a marker of endogenous arachidonate metabolism and thromboxane A2 synthesis. Results demonstrate that three endotoxins (LPS S1959, LPS R110, LPS R45) after 2 min of action, even at the lowest concentration (0.03 microg/10(8) platelets) stimulated the generation of TBARS and release of superoxide radicals. All LPS contain lipid A as a component but differ in their chemical composition in the polysaccharide part. It is suggested that the observed effects of LPS on blood platelets are attributable to their lipid A portion.  相似文献   

16.
Hyperimmunoglobulinemia is frequently observed in patients with chronic liver diseases. However, the exact mechanism underlying the high level of antibody formation is not fully understood. In our study, we provide evidence for the functional role of the liver and the stimulation of plasma cell proliferation in hyperimmunoglobulinemia. We collected sera from patients with chronic liver diseases, and the level of serum immunoglobulins in patients was examined; this was also investigated in animal models of liver cirrhosis and hepatocellular carcinoma. An end-to-side microsurgical portacaval shunt was used to mimic liver dysfunction in rats. We used portal vein serum and inferior vena cava serum to immunize healthy rats and mice in order to confirm the function of the healthy liver in disposing of antigens and endotoxins from the gut. For the analysis of the state of plasma cell activation, plasma cells from mice were stained with PE-conjugated anti-CD138 and FITC-conjugated anti-BrdU for flow cytometry analysis. Hyperimmunoglobulinemia was observed both in patients with chronic liver diseases and in related animal models, and high plasma LPS levels were also observed. There was a significant increase in the activation and proliferation of plasma cell in mice immunized with antigens or LPS-positive serum compared with controls that were immunized with antigens and LPS-negative serum. We confirmed that the healthy liver plays an important role in disposing of antigens and endotoxins derived from the gut. Hyperimmunoglobulinemia in chronic liver diseases mainly arises due to the collateral circulation secondary to portal hypertension, gut antigens and endotoxins that bypass the liver and reach the antibody-producing cells.  相似文献   

17.
BackgroundGut microbiota is increasingly recognized as the key participant in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) by translocation of its products, such as lipopolysaccharide (LPS), via the dysfunctional intestinal barrier. Qushi Huayu decoction (QHD), a traditional Chinese medicine, is developed specially for NAFLD and used in clinic in China for more than a decade and previously found to ameliorate non-alcoholic steatohepatitis (NASH) induced by high-fat diet (HFD) in mice accompanied with inhibited metabolic endotoxemia and hepatic LPS signalling.PurposeTo investigate the mechanism of LPS gut-leakage inhibition by QHD in NASH.MethodsEffects of QHD on gut microbioa and intestinal barrier were evaluated in NASH induced by HFD in mice. 16S rRNA sequencing is employed to analyse the gut microbiota composition. To identify the potential signalling pathway responsible for tight junction regulation, the colonic phosphoprotein profile is screened via the Phospho Explorer Antibody Array and verified in NASH, intestinal barrier dysfunctional mouse and Caco-2 cells.ResultsQHD ameliorates NASH accompanied with regulating the gut microbiota composition, protecting intestinal tight junctions and inhibiting LPS gut-leakage without decreasing the abundance of identified Gram-negative bacteria. The validated data of phosphorylated proteins suggested that mitogen-activated protein kinase (MAPK) pathway is predominantly responsible for the colonic tight junction regulation by QHD.ConclusionQHD inhibits LPS gut-leakage in NASH, which is associated with downregulation of intestinal MAPK pathway.  相似文献   

18.
Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as Type 2 Diabetes and atherosclerosis) has shifted the focus from Western diet-induced changes in gut microbiota per se to release of gut bacteria-derived products into circulation as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. Under physiological conditions, an intact intestinal barrier prevents this release of LPS underscoring the importance of examining and modulating the direct effects of Western diet on intestinal barrier function. In the present study we evaluated two strategies, namely selective gut decontamination and supplementation with oral curcumin, to modulate Western-diet (WD) induced changes in intestinal barrier function and subsequent development of glucose intolerance and atherosclerosis. LDLR−/− mice were fed WD for 16 weeks and either received non-absorbable antibiotics (Neomycin and polymyxin) in drinking water for selective gut decontamination or gavaged daily with curcumin. WD significantly increased intestinal permeability as assessed by in vivo translocation of FITC-dextran and plasma LPS levels. Selective gut decontamination and supplementation with curcumin significantly attenuated the WD-induced increase in plasma LPS levels (3.32 vs 1.90 or 1.51 EU/ml, respectively) and improved intestinal barrier function at multiple levels (restoring intestinal alkaline phosphatase activity and expression of tight junction proteins, ZO-1 and Claudin-1). Consequently, both these interventions significantly reduced WD-induced glucose intolerance and atherosclerosis in LDLR−/− mice. Activation of macrophages by low levels of LPS (50 ng/ml) and its exacerbation by fatty acids is likely the mechanism by which release of trace amounts of LPS into circulation due to disruption of intestinal barrier function induces the development of these diseases. These studies not only establish the important role of intestinal barrier function, but also identify oral supplementation with curcumin as a potential therapeutic strategy to improve intestinal barrier function and prevent the development of metabolic diseases.  相似文献   

19.
Bacterial endotoxins or lipopolysaccharides (LPS) are unique glycolipids present in the outer cell membrane of all gram-negative bacteria. It is now generally recognized that LPS is of primary importance in initiating the pathophysiological changes that often accompany gram-negative bacillary infections in humans including hypotensive shock, disseminated intravascular coagulation, and metabolic abnormalities. Although the biochemical mechanisms of these changes are not well understood, increasing emphasis has been placed on defining the biochemical response of the macrophage (M phi) to LPS. In this paper we describe two M phi-derived factors induced by LPS that may be important in the expression of endotoxic activity in the host. These are a procoagulant activity, which is present on the cell membrane of LPS-treated rabbit liver M phi and acts by directly activating coagulation factor X, and a factor released into the supernatant by LPS-treated peritoneal exudate M phi, which suppresses steroidogenesis in explanted adrenocortical cells. The potential role of the M phi in regulating the binding of LPS to high-density lipoproteins through the induction of acute phase proteins is also considered.  相似文献   

20.
Recent publications have provided confusing information on the importance of the J chain for secretion of dimeric IgA at mucosal surfaces. Using J chain-deficient (J chain-/-) mice, we addressed whether a lack of J chain had any functional consequence for the ability to resist challenge with cholera toxin (CT) in intestinal loops. J chain-/- mice had normal levels of IgA plasma cells in the gut mucosa, and the Peyer's patches exhibited normal IgA B cell differentiation and germinal center reactions. The total IgA levels in gut lavage were reduced by roughly 90% as compared with that in wild-type controls, while concomitantly serum IgA levels were significantly increased. Total serum IgM levels were depressed, whereas IgG concentrations were normal. Following oral immunizations with CT, J chain-/- mice developed 10-fold increased serum antitoxin IgA titers, but gut lavage anti-CT IgA levels were substantially reduced. However, anti-CT IgA spot-forming cell frequencies in the gut lamina propria were normal. Anti-CT IgM concentrations were low in serum and gut lavage, whereas anti-CT IgG titers were unaltered. Challenge of small intestinal ligated loops with CT caused dramatic fluid accumulation in immunized J chain-/- mice, and only 20% protection was detected compared with unimmunized controls. In contrast, wild-type mice demonstrated 80% protection against CT challenge. Mice heterozygous for the J chain deletion exhibited intermediate gut lavage anti-CT IgA and intestinal protection levels, arguing for a J chain gene-dosage effect on the transport of secretory IgA. This study unequivocally demonstrates a direct relationship between mucosal transport of secretory SIgA and intestinal immune protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号