首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:观察二甲双胍联合阿霉素应用对人乳腺癌细胞MDA-MB-231增殖和凋亡的影响。方法:MTT法分别检测二甲双胍、阿霉素和二甲双胍联合阿霉素对MDA-MB-231细胞生长的抑制作用;平板克隆实验检测二甲双胍联合阿霉素对MDA-MB-231细胞克隆形成能力的影响;流式细胞仪检测二甲双胍联合阿霉素对MDA-MB-231细胞凋亡的影响。结果:二甲双胍和阿霉素分别对MDA-MB-231细胞生长有抑制作用,二甲双胍联合阿霉素应用对MDA-MB-231细胞生长的抑制作用更加显著,并且随着药物浓度的增加而增加;二甲双胍联合阿霉素应用与单药相比能够明显降低MDA-MB-231细胞克隆形成率,并且促进细胞凋亡。结论:二甲双胍联合阿霉素应用与单药相比能够显著抑制人乳腺癌细胞MDA-MB-231细胞的增值,促进其凋亡,可见两药联用对肿瘤细胞的杀伤具有协同性。  相似文献   

2.
OBJECTIVES: Previously it has been shown, that the volume-activated plasma membrane chloride channel is associated with regulatory volume decrease (RVD) of cells and may play an important role in control of cell proliferation. We have demonstrated that both expression of the channel and RVD capacity are actively regulated in the cell cycle. In this study, we aimed to further study the role of the volume-activated chloride current and RVD in cell cycle progression and overall in cell proliferation. MATERIALS AND METHODS: Whole-cell currents, RVD, cell cycle distribution, cell proliferation and cell viability were measured or detected with the patch-clamp technique, the cell image analysis technique, flow cytometry, the MTT assay and the trypan blue assay respectively, in nasopharyngeal carcinoma cells (CNE-2Z cells). RESULTS: The Cl- channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen, inhibit the volume-activated chloride current, RVD and proliferation of CNE-2Z cells in a dose-dependent manner. Analysis of relationships between the current, RVD and cell proliferation showed that both the current and RVD were positively correlated with cell proliferation. NPPB (100 microM) and tamoxifen (20 microM) did not significantly induce cell death, but inhibited cell proliferation, implying that the blockers may inhibit cell proliferation by affecting cell cycle progression. This was verified by the observation that tamoxifen (20 microM) and NPPB (100 microM) inhibited cell cycle progress and arrested cells at the G0/G1 phase boundary. CONCLUSIONS: Activity of the volume-activated chloride channel is one of the important factors that regulate the passage of cells through the G1 restriction point and that the Cl- current associated with RVD plays an important role in cell proliferation.  相似文献   

3.
Cell cycle and apoptosis   总被引:2,自引:0,他引:2  
Apoptosis and proliferation are intimately coupled. Some cell cycle regulators can influence both cell division and programmed cell death. The linkage of cell cycle and apoptosis has been recognized for c-Myc, p53, pRb, Ras, PKA, PKC, Bcl-2, NF-kappa B, CDK, cyclins and CKI. This review summarizes the different functions of the proteins presently known to control both apoptosis and cell cycle progression. These proteins can influence apoptosis or proliferation but different variables, including cell type, cellular environment and genetic background, make it difficult to predict the outcome of cell proliferation, cell cycle arrest or cell death. These important decisions of cell proliferation or cell death are likely to be controlled by more than one signal and are necessary to ensure a proper cellular response.  相似文献   

4.
To establish the relation of glycosaminoglycan synthesis to cell proliferation, we investigated the synthesis of individual glycosaminoglycan species by intact cells and in a cell-free system, using normal and transformed human fibroblasts under differing culture conditions. Reducing serum concentration brought about a marked decline in the synthesis of hyaluronate (HA) as well as cell proliferation on both normal and transformed cells. Both HA synthesis and proliferation decreased with increasing cell densities markedly (in inverse proportion to cell density) in normal cells but gradually in transformed cells. This noticeable congruity of the changes in HA synthesis and proliferation indicates that the change in HA synthesis is related primarily to cell proliferation rather than to cell density or cellular transformation. Examination of HA synthesis in a cell-free system demonstrated that the activity of HA synthetase also fluctuated in conjunction with cell proliferation. Furthermore, growth-reduced cells (except crowded transformed cells) inhibited cell-free HA synthesis and this inhibition was induced coincidentally with a decrease in both HA synthetase activity and proliferation. These findings suggest that the change in HA synthesis is significant in the regulation of cell proliferation.  相似文献   

5.
Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.  相似文献   

6.
7.
An exquisite equilibrium between cell proliferation and programmed cell death is required to maintain physiological homeostasis. In inflammatory bowel disease, and especially in Crohn's disease, enhanced proliferation along with defective apoptosis of immune cells are considered key elements of pathogenesis. Despite the relatively limited attention that has been given to research efforts devoted to intestinal fibrosis to date, there is evidence suggesting that enhanced proliferation along with defective programmed cell death of mesenchymal cells can significantly contribute to the development of excessive fibrogenesis in many different tissues. Moreover, some therapies have demonstrated potential antifibrogenic efficacy through the regulation of mesenchymal cell proliferation and programmed cell death. Further understanding of the pathways involved in the regulation of mesenchymal cell proliferation and apoptosis is, however, required.  相似文献   

8.
The effects of chemical sympathectomy and of the injection of amines or amine-receptor blocking drugs on cell proliferation in colonic crypts and in dimethylhydrazine-induced colonic carcinomata is examined in rats using a stathmokinetic technique. In animals which had been chemically sympathectomized by injection of 6-hydroxydopamine cell proliferation essentially ceased in the colonic crypts but continued at a normal rate in the tumours. Stimulation of alpha-adrenoceptors by metaraminol, a drug with properties similar to noradrenaline, caused acceleration of cell proliferation in colonic crypts but not in tumours. Conversely, blockade of alpha-adrenoceptors by phentolamine inhibited cell proliferation in crypts but not in tumours. Injection of adrenaline, predominantly a beta-adrenergic agonist, inhibited cell proliferation in the tumours but not in colonic crypts whereas blockade of beta-adrenoceptors by propranolol accelerated cell proliferation in tumours but not in colonic crypts. It is postulated that cell proliferation in the crypts of Lieberkühn in rat colon resembles that in rat jejunum in being controlled by the autonomic nervous system. However, tumour cell proliferation does not appear to be subject to such regulation.  相似文献   

9.
目的:明确FAP是否通过RhoA/ROCK、Racl-GTP通路发挥促增殖、侵袭和迁移作用。方法:用MTT实验,Transwell实验和迁移实验检测FAP、RhoA/ROCK、Racl-GTP对卵巢癌细胞系HO-8910PM的增殖,侵袭和迁移的影响。结果:1、MTT法,迁移和侵袭实验证实用Y-27632抑制RhoA/ROCK途径能够促进卵巢癌细胞的增殖、迁移和侵袭,与FAP联合作用时促进作用增强。2、MTT法,迁移和侵袭实验证实NSC23766抑制Racl途径能够抑制卵巢癌细胞的增殖、迁移和侵袭,与FAP联合作用使FAP的促进作用减弱。结论:l、RhoA/ROCK通路抑制HO一8910PM细胞增殖、迁移和侵袭;Racl-GTP促进H0—8910PM细胞增殖、迁移和侵袭。2、FAP不是通过RhoA/ROCK而是通过Racl—GTP信号通路在HO.8910PM细胞发挥促增殖、迁移和侵袭作用的。  相似文献   

10.
The action of juvenile hormone (JH) and JH mimics have been examined in vitro by utilizing the imaginal disc-derived cell line, IAL-PID2. We have discovered that the cell line was responsive to JH and a variety of JH mimics. The most consistent response obtained in our studies was inhibition of cell proliferation, in the absence of 20-hydroxyecdysone (20E), which characteristically reduces cell proliferation in its own right in this cell line. JH-I, JH-III, methoprene, fenoxycarb, and farnesol significantly inhibited cell proliferation after 3 days of exposure of the cells in vitro to each of the compounds. Linoleic acid controls had no effect on proliferation in the cultures. The cell proliferation assay demonstrates the JH responsiveness of this cell line, but the concentrations of JH required were high compared to the concentrations of 20E needed for inhibition of proliferation in these cells.  相似文献   

11.
玉米籽粒胚乳细胞增殖及其与淀粉充实的关系   总被引:3,自引:0,他引:3  
用纤维素酶解离胚乳、滤膜法统计玉米胚乳细胞的数目,进一步借助Logistic方程模拟胚乳细胞增殖动态的结果表明,整个灌浆期间胚乳细胞增殖呈现“慢-快-慢”的变化趋势。授粉15d后,不同类型胚乳的细胞数目依序为普通玉米〉糯玉米〉甜玉米〉爆裂玉米;胚乳细胞数目主要取决于细胞的增殖速率,并与淀粉充实和粒重关系密切。胚乳发育前期以胚乳细胞增殖为主,后期以淀粉积累为主。  相似文献   

12.
The gap junction proteins, connexins (Cx), are present in the testis and among them Cx43 play an essential role in spermatogenesis. By using an in vitro proliferation model of germ cells and Sertoli cells, we tempted here to clarify the role of Cx43 in the control of Sertoli and germ cell proliferation and apoptosis. Cx43 was detected in purified preparations of Sertoli cells and spermatogonia and immunolocalized in both cell types identified by vimentin and c-kit, respectively. Inhibition of gap junction coupling by the gap junction inhibitor α-GA significantly enhanced BrdU incorporation in Sertoli cells and reduced the number of activated caspase-3 positive germ cells. Similarly, inhibitory Cx43 and pan-Cx mimetic inhibitory peptides increased proliferation of Sertoli cells and stimulated survival of germ cells. Cx32 mimetic inhibitory peptide also stimulated Sertoli cell proliferation without altering germ cell proliferation and apoptosis. The present results reveal that Cx43 gap junctions between Sertoli cells participate in the control of Sertoli cell proliferation and that Cx43 gap junctions between Sertoli cells and spermatogonia are indirectly involved in germ cell number increase by controlling germ cell survival rather than germ cell proliferation.  相似文献   

13.
Glutathione (GSH) is an abundant intracellular tripeptide that has been implicated as an important regulator of T cell proliferation. The effect of pharmacological regulators of GSH and other thiols on murine T cell signaling, proliferation, and intracellular thiol levels was examined. l-Buthionine-S,R-sulfoximine (BSO), an inhibitor of GSH synthesis, markedly reduced GSH levels and blocked T cell proliferation without significant effect on cell viability. N-acetylcysteine markedly enhanced T cell proliferation without affecting GSH levels. Cotreatment of T cells with N-acetylcysteine and BSO failed to restore GSH levels, but completely restored the proliferative response. Both 2-ME and l-cysteine also reversed the BSO inhibition of T cell proliferation. Intracellular l-cysteine levels were reduced with BSO treatment and restored with cotreatment with NAC or l-cysteine. However, 2-ME completely reversed the BSO inhibition of proliferation without increasing intracellular cysteine levels. Therefore, neither GSH nor cysteine is singularly critical in limiting T cell proliferation. Reducing equivalents from free thiols were required because oxidation of the thiol moiety completely abolished the effect. Furthermore, BSO did not change the expression of surface activation markers, but effectively blocked IL-2 and IL-6 secretion. Importantly, exogenous IL-2 completely overcame BSO-induced block of T cell proliferation. These results demonstrate that T cell proliferation is regulated by thiol-sensitive pathway involving IL-2.  相似文献   

14.
Modulation of stem cell proliferation is a crucial aspect of neural developmental biology and regenerative medicine. To investigate the effect of optical stimulation on neural stem cell proliferation, cells transduced with channelrhodopsin-2 (ChR2) were used to analyze changes in cell proliferation and cell cycle distribution after light stimulation. Blue light significantly inhibited cell proliferation and affected the cell cycle, which increased the percentage of cells in G1 phase and reduced the percentage in S phase. It is likely that the influence of blue light on cell proliferation and the cell cycle was mediated by membrane depolarization, which induced accumulation of p21 and p27 proteins. Our data provide additional specific evidence that membrane depolarization may inhibit neural stem cell proliferation.  相似文献   

15.
Summary Exposure of squamous carcinoma cell (SCC) lines, exhibiting high levels of epidermal growth factor (EGF) receptors, to EGF for 6 d caused a dose-dependent inhibition of cell proliferation. This EGF-induced inhibition of cell proliferation occurred under both low (0.06 mM) and normal (1.6 mM) Ca2+ concentrations. Furthermore, the extent of EGF-induced inhibition of cell proliferation seemed to be independent of the number of EGF-receptors. This conclusion is based on the notion that the various SCC lines exhibited an increasing number of EGF receptors accompanied by a decreasing ability to differentiate, whereas no relationship was observed with the EGF-induced inhibition of cell proliferation in these cell lines. Retinoids caused also a dose-dependent inhibition of cell proliferation. The effects of EGF and retinoids were additive, indicating that different regulatory mechanisms are involved. On the other hand, hydrocortisone caused a stimulation of SCC-proliferation, also independent of EGF. In contrast to SCC cells, EGF did not affect significantly the rate of proliferation of normal keratinocytes. However, the simultaneous addition of EGF and hydrocortisone resulted in a significant increase in the rate of keratinocyte proliferation only in cells grown under normal calcium conditions. Differentiation capacity of normal keratinocytes and SCC lines was not affected by EGF. Furthermore, the retinoid-induced decrease and hydrocortisone-induced increase of competence of cells to form cornified envelopes was not affected by EGF. These observations suggest that the action of retinoids and hydrocortisone on both cell proliferation and cell differentiation occurs independently of EGF receptors. This work was partly supported by The Netherlands Cancer Foundation (Koningin Wilhelmina Fonds), grant IKW 85–71.  相似文献   

16.
AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance.  相似文献   

17.
目的探讨青春双歧杆菌对食管癌EC109细胞的增殖抑制作用及对细胞周期的影响。方法用MTT比色法测定EC109细胞活性,用流式细胞仪测定EC109细胞周期。结果青春双歧杆菌对EC109细胞具有显著的增殖抑制作用,并呈剂量和时间依赖性;经青春双歧杆菌处理后,EC109细胞周期发生变化:细胞分裂阻滞于G1期。结论青春双歧杆菌可通过影响细胞周期抑制食管癌EC109细胞的生长。  相似文献   

18.
Aberrant fatty acid (FA) metabolism is a hallmark of proliferating cells, including untransformed fibroblasts or cancer cells. Lipolysis of intracellular triglyceride (TG) stores by adipose triglyceride lipase (ATGL) provides an important source of FAs serving as energy substrates, signaling molecules, and precursors for membrane lipids. To investigate if ATGL-mediated lipolysis impacts cell proliferation, we modified ATGL activity in murine embryonic fibroblasts (MEFs) and in five different cancer cell lines to determine the consequences on cell growth and metabolism. Genetic or pharmacological inhibition of ATGL in MEFs causes impaired FA oxidation, decreased ROS production, and a substrate switch from FA to glucose leading to decreased AMPK-mTOR signaling and higher cell proliferation rates. ATGL expression in these cancer cells is low when compared to MEFs. Additional ATGL knockdown in cancer cells did not significantly affect cellular lipid metabolism or cell proliferation whereas the ectopic overexpression of ATGL increased lipolysis and reduced proliferation. In contrast to ATGL silencing, pharmacological inhibition of ATGL by Atglistatin© impeded the proliferation of diverse cancer cell lines, which points at an ATGL-independent effect. Our data indicate a crucial role of ATGL-mediated lipolysis in the regulation of cell proliferation. The observed low ATGL activity in cancer cells may represent an evolutionary selection process and mechanism to sustain high cell proliferation rates. As the increasing ATGL activity decelerates proliferation of five different cancer cell lines this may represent a novel therapeutic strategy to counteract uncontrolled cell growth.  相似文献   

19.
An increased rate of cell proliferation has long been recognized as an important factor in both human and experimental carcinogenesis, and may be a major risk factor for cancer development in a number of tissues. Limited information exists, however, regarding the relevance of increased cell proliferation and nasal cancer. Examples of toxicological studies utilizing nasal cell proliferation data as an important endpoint are briefly reviewed. Data for one of the most extensively studied chemicals, the weakly genotoxic carcinogen formaldehyde, support the contention that the concentration–response relationship for tumor incidence is a function of formaldehyde-induced target cell proliferation, in addition to other factors including target cell population size. The increasing importance of utilizing cell proliferation data in determining dose–response relationships and in biologically-based risk assessment models is discussed.  相似文献   

20.
It has been shown that in the course of isoproterenol induction of cell proliferation of rat and mouse salivary glands, there takes place formation of T lymphocytes that stimulate and inhibit proliferation of the gland cells. In the absence of T lymphocytes isoproterenol does not induce cell proliferation. It has been demonstrated in mice that lymphocytes that stimulate cell proliferation of the salivary glands belong to Ly 1+ T lymphocytes whereas those inhibiting proliferation to Ly 2+ T lymphocytes. The former ones are formed and proliferate before commencement of glandular cell proliferation, and the latter ones concurrently with the development of cell proliferation of the salivary glands. The mechanisms described may point to the existence of a special system of T lymphocytes, that is not identical to the immune system, with this special system playing a definite role in the maintenance of the proliferative homeostasis of host tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号