首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim In any region affected, fires exhibit a strong seasonal cycle driven by the dynamic of fuel moisture and ignition sources throughout the year. In this paper we investigate the global patterns of fire seasonality, which we relate to climatic, anthropogenic, land‐cover and land‐use variables. Location Global, with detailed analyses from single 1°× 1° grid cells. Methods We use a fire risk index, the Chandler burning index (CBI), as an indicator of the ‘natural’, eco‐climatic fire seasonality, across all types of ecosystems. A simple metric, the middle of the fire season, is computed from both gridded CBI data and satellite‐derived fire detections. We then interpret the difference between the eco‐climatic and observed metrics as an indicator of the human footprint on fire seasonality. Results Deforestation, shifting cultivation, cropland production or tropical savanna fires are associated with specific timings due to land‐use practices, sometimes largely decoupled from the CBI dynamics. Detailed time series from relevant locations provide comprehensive information about these practices and how they are adapted to eco‐climatic conditions. Main conclusions We find a great influence of anthropogenic activities on global patterns of fire seasonality. The specificity of the main fire practices and their easy identification from global observation is a potential tool to support land‐use monitoring efforts. Our results should also prove valuable in the development of a methodological approach for improving the representation of anthropogenic fire practices in dynamic global vegetation models.  相似文献   

2.
The estimation of the carbon balance in ecosystems, regions, and the biosphere is currently one of the main concerns in the study of the ecology of global change. Current remote sensing methodologies for estimating gross primary productivity are not satisfactory because they rely too heavily on (i) the availability of climatic data, (ii) the definition of land‐use cover, and (iii) the assumptions of the effects of these two factors on the radiation‐use efficiency of vegetation (RUE). A new methodology is urgently needed that will actually assess RUE and overcome the problems associated with the capture of fluctuations in carbon absorption in space and over time. Remote sensing techniques such as the widely used reflectance vegetation indices (e.g. NDVI, EVI) allow green plant biomass and therefore plant photosynthetic capacity to be assessed. However, there are vegetation types, such as the Mediterranean forests, with a very low seasonality of these vegetation indices and a high seasonality of carbon uptake. In these cases it is important to detect how much of this capacity is actually realized, which is a much more challenging goal. The photochemical reflectance index (PRI) derived from freely available satellite information (MODIS sensor) presented for a 5‐year analysis for a Mediterranean forest a positive relationship with the RUE. Thus, we show that it is possible to estimate RUE and GPP in real time and therefore actual carbon uptake of Mediterranean forests at ecosystem level using the PRI. This conceptual and technological advancement would avoid the need to rely on the sometimes unreliable maximum RUE.  相似文献   

3.
Traditionally fuel maps are built in terms of ‘fuel types’, thus considering the structural characteristics of vegetation only. The aim of this work is to derive a phenological fuel map based on the functional attributes of coarse-scale vegetation phenology, such as seasonality and productivity. MODIS NDVI 250m images of Sardinia (Italy), a large Mediterranean island with high frequency of fire incidence, were acquired for the period 2000–2012 to construct a mean annual NDVI profile of the vegetation at the pixel-level. Next, the following procedure was used to develop the phenological fuel map: (i) image segmentation on the Fourier components of the NDVI profiles to identify phenologically homogeneous landscape units, (ii) cluster analysis of the phenological units and post-hoc analysis of the fire-proneness of the phenological fuel classes (PFCs) obtained, (iii) environmental characterization (in terms of land cover and climate) of the PFCs. Our results showed the ability of coarse-resolution satellite time-series to characterize the fire-proneness of Sardinia with an adequate level of accuracy. The remotely sensed phenological framework presented may represent a suitable basis for the development of fire distribution prediction models, coarse-scale fuel maps and for various biogeographic studies.  相似文献   

4.
Leaf phenology represents a major temporal component of ecosystem functioning, and understanding the drivers of seasonal variation in phenology is essential to understand plant responses to climate change. We assessed the patterns and drivers of land surface phenology, a proxy for leafing phenology, for the meridional Espinhaço Range, a South American tropical mountain comprising a mosaic of savannas, dry woodlands, montane vegetation and moist forests. We used a 14-year time series of MODIS/NDVI satellite images, acquired between 2001 and 2015, and extracted phenological indicators using the TIMESAT algorithm. We obtained precipitation data from the Tropical Rainfall Measuring Mission, land surface temperature from the MODIS MOD11A2 product, and cloud cover frequency from the MODIS MOD09GA product. We also calculated the topographic wetness index and simulated clear-sky radiation budgets based on the SRTM elevation model. The relationship between phenology and environmental drivers was assessed using general linear models. Temporal displacement in the start date of the annual growth season was more evident than variations in season length among vegetation types, indicating a possible temporal separation in the use of resources. Season length was inversely proportional to elevation, decreasing 1.58 days per 100 m. Green-up and senescence rates were faster where annual temperature amplitude was higher. We found that water and light availability, modulated by topography, are the most likely drivers of land surface phenology in the region, determining the start, end and length of the growing season. Temperature had an important role in determining the rates of leaf development and the strength of vegetation seasonality, suggesting that tropical vegetation is also sensitive to latitudinal temperature changes, regardless of the elevational gradient. Our work improves the current understanding of phenological strategies in the seasonal tropics and emphasizes the importance of topography in shaping light and water availability for leaf development in snow-free mountains.  相似文献   

5.
Aim Woody plants affect vegetation–environment interactions by modifying microclimate, soil moisture dynamics and carbon cycling. In examining broad‐scale patterns in terrestrial vegetation dynamics, explicit consideration of variation in the amount of woody plant cover could provide additional explanatory power that might not be available when only considering landscape‐scale climate patterns or specific vegetation assemblages. Here we evaluate the interactive influence of woody plant cover on remotely sensed vegetation dynamics across a climatic gradient along a sky island. Location The Santa Rita Mountains, Arizona, USA. Methods Using a satellite‐measured normalized difference vegetation index (NDVI) from 2000 to 2008, we conducted time‐series and regression analyses to explain the variation in functional attributes of vegetation (productivity, seasonality and phenology) related to: (1) vegetation community, (2) elevation as a proxy for climate, and (3) woody plant cover, given the effects of the other environmental variables, as an additional ecological dimension that reflects potential vegetation–environment feedbacks at the local scale. Results NDVI metrics were well explained by interactions among elevation, vegetation community and woody plant cover. After accounting for elevation and vegetation community, woody plant cover explained up to 67% of variation in NDVI metrics and, notably, clarified elevation‐ and community‐specific patterns of vegetation dynamics across the gradient. Main conclusions In addition to the environmental factors usually considered – climate, reflecting resources and constraints, and vegetation community, reflecting species composition and relative dominance – woody plant cover, a broad‐scale proxy of many vegetation–environment interactions, represents an ecological dimension that provides additional process‐related understanding of landscape‐scale patterns of vegetation function.  相似文献   

6.
Here, we evaluate the ecosystem functioning and the ecosystems services supply of different vegetation types (grasslands, shrublands and woodlands) under contrasting management regimes by comparing a protected area with the surrounding landscape, which has been subjected to human disturbance in the Eastern Hills of Uruguay. We propose, based on functional attributes and vegetation physiognomy, a State and Transition Model for the dynamics of the grassland–woodland mosaic. We used remote sensing techniques to: (i) develop a land‐cover map of the study area based on supervised Landsat imagery classification, and (ii) compare attributes of the ecosystem functioning (productivity and seasonality) and service supply derived from the Normalized Difference Vegetation Index (NDVI) images provided by the moderate resolution imaging spectroradiometer (MODIS) sensor. The land‐cover map showed that grasslands and shrublands were the most extensive land covers in the study area. These vegetation types presented higher productivity, seasonality and ecosystem service supply, outside the protected area than inside it. On the other hand, woodlands showed higher productivity, ecosystem service supply and lower seasonality inside the protected area than outside of it. Two axes represented the grassland–woodland mosaic dynamic: (i) the mean annual and (ii) the intra‐annual coefficient of variation of the NDVI. Our results highlight that conservation of grasslands, shrublands and woodlands require different management strategies based on particular disturbance regimes like moderate grazing and controlled burns. Moderate disturbances may help to preserve ecosystem services provisioning in grasslands and shrublands. On the contrary, woodland conservation requires a more rigorous regime of protection against disturbances.  相似文献   

7.
基于不同光谱指数的植被物候期遥感监测差异   总被引:2,自引:0,他引:2  
植被物候是陆地生态系统响应气候和环境变化的一项综合性指标.遥感光谱已经被广泛用于提取植被物候期,但遥感提取的物候期与站点观测差别很大,其物理意义尚不明确.本文选取中国东北部的一景MODIS数据(2000—2014年),分析了基于红波段和近红外波段的归一化差值植被指数(NDVI)和简单比植被指数(SR)提取的植被生长季起始期(SOS)和结束期(EOS)的差异.结果表明:两者的物候期存在显著差别,基于NDVI提取的SOS比SR提取的SOS平均早18.9 d,基于NDVI提取的EOS比SR提取的EOS平均晚19.0 d,NDVI得到的生长季长度更长.基于NDVI和SR提取的物候期的年际变化也存在显著差别,超过20%的像元SOS和EOS甚至表现出相反的年际变化趋势.上述差异与两种植被指数自身的季节曲线特征和抗噪性差异有关.NDVI与SR观测数据来源完全一致,仅数学表达形式不同,提取的物候期结果却存在显著差异.说明遥感监测的植被物候期高度依赖于植被指数的数学表达形式,如何建立可靠的植被物候期遥感提取方法仍需进一步研究.  相似文献   

8.
浙江省植被NDVI动态及其对气候的响应   总被引:14,自引:0,他引:14  
何月  樊高峰  张小伟  柳苗  高大伟 《生态学报》2012,32(14):4352-4362
利用GIMMS和MODIS两种归一化植被指数(NDVI)资料反演了1982—2010年浙江植被覆盖状况,结合同期研究区63个气象站点的气温、降水和湿润指数等气候指标,分析了该地区植被年际变化、月际变化及其对气候要素的响应特征。结果表明:(1)研究期间,浙江气候总体呈暖干化趋势,植被覆盖缓慢下降,主要是由于森林植被遭破坏,农业生产活动受抑制影响所致,其中NDVI显著减少的地区约占全省陆域面积的29.1%,主要发生在6—11月;(2)降水量及干湿程度对浙江植被NDVI年变化起着决定性作用。植被与气候要素年变化相关分析发现,NDVI与湿润指数关系较降水、气温更为密切,两者相关及偏相关系数均通过0.05水平的置信度检验,这表明在年际尺度上,湿度的增加增大了植被的生长势,有利于植被生长;(3)植被与气候要素月变化分析表明冬季的热量供给是影响浙江植被生长的重要因子,而植被变化对夏季降水和干湿程度的最大响应为滞后两个月;(4)农业生产水平的提高使得农作物种植区NDVI有所增加,人类活动对浙江植被覆盖的影响不可忽视。  相似文献   

9.
Frequent and continuous time series is required for the detection of plant phenology and vegetation succession. The launch of novel remote sensor MODIS (moderate resolution imaging spectroradiometer) provided us with an opportunity to make a new trial of studying the rapid vegetation succession in estuarine wetlands. In this study, the spatiotemporal variations of vegetation cover and tidal flat elevation along a transect (covering 6 pixels of MODIS) of an estuarine wetland at Dongtan, Chongming Island, in Yangtze River estuary, China were investigated to assess its rapid vegetation succession and physical conditions. By combining the field data collected, the time series of MODIS-based VIs (vegetation indices), including NDVI (normalized difference vegetation index), EVI (enhanced vegetation index) and MSAVI (modified soil adjusted vegetation index), and a water index, LSWI (land surface water index) were utilized to characterize the rapid vegetation succession between 2001 and 2006. We found that NDVI, EVI and MSAVI exhibited significant spatial and temporal correlations with vegetation succession, while LSWI behaved in a positive manner with surface water and soil moisture along with the successional stages. In order to take the advantages of both VIs and water index, a composite index of VWR (vegetation water ratio) combining LSWI and EVI or MSAVI was proposed in this paper. This index facilitates the identification of vegetation succession by simply comparing the values of VWR at different stages, and therefore it could track vegetation succession and estimate community spread rate. Additionally, this study presented an attempt of using MODIS datasets to monitor the change of tidal flat elevation, which demonstrated a potential remote sensing application in geodesy of coastal and estuarine areas.  相似文献   

10.
Measuring phenological variability from satellite imagery   总被引:6,自引:0,他引:6  
Abstract. Vegetation phenological phenomena are closely related to seasonal dynamics of the lower atmosphere and are therefore important elements in global models and vegetation monitoring. Normalized difference vegetation index (NDVI) data derived from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) satellite sensor offer a means of efficiently and objectively evaluating phenological characteristics over large areas. Twelve metrics linked to key phenological events were computed based on time-series NDVI data collected from 1989 to 1992 over the conterminous United States. These measures include the onset of greenness, time of peak NDVI, maximum NDVI, rate of greenup, rate of senescence, and integrated NDVI. Measures of central tendency and variability of the measures were computed and analyzed for various land cover types. Results from the analysis showed strong coincidence between the satellite-derived metrics and predicted phenological characteristics. In particular, the metrics identified interannual variability of spring wheat in North Dakota, characterized the phenology of four types of grasslands, and established the phenological consistency of deciduous and coniferous forests. These results have implications for large-area land cover mapping and monitoring. The utility of remotely sensed data as input to vegetation mapping is demonstrated by showing the distinct phenology of several land cover types. More stable information contained in ancillary data should be incorporated into the mapping process, particularly in areas with high phenological variability. In a regional or global monitoring system, an increase in variability in a region may serve as a signal to perform more detailed land cover analysis with higher resolution imagery.  相似文献   

11.
日光诱导叶绿素荧光对亚热带常绿针叶林物候的追踪   总被引:1,自引:0,他引:1  
周蕾  迟永刚  刘啸添  戴晓琴  杨风亭 《生态学报》2020,40(12):4114-4125
植被物候期(春季返青和秋季衰老)是表征生物响应和陆地碳循环的基础信息。由于常绿针叶林冠层绿度的季节变动较弱,遥感提取常绿针叶林的物候信息存在着较大的不确定性,是目前区域物候监测中的难点。利用MODIS植被指数(归一化植被指数NDVI和增强型植被指数EVI)、GOME-2日光诱导叶绿素荧光(SIF)和通量数据(总初级生产力GPP)估算2007—2011年亚热带常绿针叶林物候期,用来比较三类遥感指数估算常绿针叶林物候的差异。结果表明:基于表征光合作用物候的通量GPP数据估算得到5年内亚热带常绿针叶林生长季开始时间(SOSGPP)为第63天,生长季结束时间(EOSGPP)为第324天,生长季长度为272天;基于反映植被光合作用特征的SIF曲线获得物候信息要滞后GPP物候期,其中生长季开始时间滞后19天,生长季结束时间滞后2天;基于传统植被指数NDVI和EVI的物候期滞后GPP物候期的时间要大于SIF滞后期,其中植被指数SOS滞后SOSGPP31天,植被指数EOS滞后EOSGPP10—17天。虽然基于3种遥...  相似文献   

12.
Aim We intend to characterize and understand the spatial and temporal patterns of vegetation phenology shifts in North America during the period 1982–2006. Location North America. Methods A piecewise logistic model is used to extract phenological metrics from a time‐series data set of the normalized difference vegetation index (NDVI). An extensive comparison between satellite‐derived phenological metrics and ground‐based phenology observations for 14,179 records of 73 plant species at 802 sites across North America is made to evaluate the information about phenology shifts obtained in this study. Results The spatial pattern of vegetation phenology shows a strong dependence on latitude but a substantial variation along the longitudinal gradient. A delayed dormancy onset date (0.551 days year?1, P= 0.013) and an extended growing season length (0.683 days year?1, P= 0.011) are found over the mid and high latitudes in North America during 1982–2006, while no significant trends in greenup onset are observed. The delayed dormancy onset date and extended growing season length are mainly found in the shrubland biome. An extensive validation indicates a strong robustness of the satellite‐derived phenology information. Main conclusions It is the delayed dormancy onset date, rather than an advanced greenup onset date, that has contributed to the prolonged length of the growing season over the mid and high latitudes in North America during recent decades. Shrublands contribute the most to the delayed dormancy onset date and the extended growing season length. This shift of vegetation phenology implies that vegetation activity in North America has been altered by climatic change, which may further affect ecosystem structure and function in the continent.  相似文献   

13.
湖南省MODIS遥感植被指数的时空变化   总被引:6,自引:0,他引:6  
采用最大值合成法,以MODIS 250 m分辨率图像为基础,提取湖南省2005年逐月植被指数值.通过月植被指数对比分析,将湖南省分为6个区描述其空间分布特征.利用5个分布均匀的气象站观测的月降水量和月平均气温数据,分析了湖南省植被指数的时相变化特征.结果表明:湖南省MODIS植被指数空间分布与植被覆盖率呈正相关,且具有一定的地域性;MODIS植被指数随季节变化,其月平均植被指数曲线形似开口向下的二次抛物线,最大值出现在7月份;MODIS月平均EVI值小于MODIS月平均NDVI值;植被指数的季节变化受温度影响较大,并且随着纬度的降低,温度对植被指数的影响力下降;MODIS EVI的变化规律比MODIS NDVI更加明显,其二次曲线更为光滑,月平均值由低逐渐上升到最大值,再逐渐降低,而后者的曲线在最大值两侧有细微波动现象.  相似文献   

14.
Abstract.  This study aims to provide trypanosomiasis-affected countries with standardized datasets and methodologies for mapping the habitat of the tsetse fly ( Glossina spp., the disease vector) by customizing and integrating state-of-the-art land cover maps on different spatial scales. Using a combination of inductive and deductive approaches, land cover and fly distribution maps are analysed in a geographic information system (GIS) to estimate the suitability of different land cover units for the three groups (subgenera) of Glossina. All land cover datasets used for and produced by the study comply with the Land Cover Classification System (LCCS). At the continental scale, a strong correlation between land cover and tsetse habitat is found for both the fusca and palpalis groups, whereas a weaker correlation found for the morsitans group may be indicative of less restrictive ecological requirements. At the regional and national levels, thematic aggregation of the multi-purpose Africover datasets yielded high-resolution, standardized land cover maps tailored for tsetse habitat for eight East African countries. The national maps provide remarkable spatial resolution, thematic detail and geographical coverage. They may be applied in subsequent phases of tsetse and trypanosomiasis control projects, including the planning of entomological surveys, actual tsetse control operations and planning for land use in reclaimed areas. The methodology and datasets discussed in the paper may have applications beyond the tsetse and trypanosomiasis issue and may be used with reference to other arthropod vectors, vector-borne and parasitic diseases.  相似文献   

15.
近10年湖北省植被指数时空变化特征及其驱动力   总被引:6,自引:0,他引:6  
为了明确湖北省植被长势变化特征及其影响因子,研究利用Landsat影像提取2005年、2010年以及2015年湖北省景观类型信息,分析近10年来景观时空变化特征;基于2005-2015年夏季MODIS/NDVI数据,采用一元线性回归、Theil-Sen median趋势、Mann-Kendall检验等分析方法对NDVI时空变化特征及其显著性进行探讨;采用最小二乘法对NDVI与气候之间的相关关系进行分析。使用DMSP/OLS和NPP/VIIRS夜间灯光数据探讨NDVI与人类经济活动之间的关系。结果表明:研究区景观类型变化以建设用地和耕地为主。耕地面积呈现逐年减少的趋势,主要转变为建设用地。建设用地面积不断增多,主要由耕地和林地转变而来,集中在武汉、荆州、襄阳城市圈;研究区NDVI值整体上表现为西高东低,以林地为主的十堰、恩施等地区NDVI值较高,以建设用地为主的武汉、襄阳、荆州等地区NDVI值较低;整体上NDVI变化呈轻微改善趋势,局部地区下降明显,鄂西北、鄂西南等地区NDVI稍有上升,武汉城市圈植被呈退化趋势;NDVI与降水量、气温的相关性均较弱,气候因子不是该区NDVI变化的主导因子;NDVI与夜间灯光亮度值呈显著负相关,相关系数达-0.8030,整体上人类经济活动与NDVI呈负相关关系,且有着分区性的特点,在武汉、襄阳等以建设用地为主的地区人类经济活动对NDVI起抑制作用,而在恩施、十堰等林地为主的地区人类活动对NDVI起促进作用。人类社会经济活动是影响研究区景观格局和植被变化的重要驱动力,城镇化扩张是湖北省植被变化的主要原因。  相似文献   

16.
2000-2010年黄河流域植被覆盖的时空变化   总被引:36,自引:0,他引:36  
黄河流域位于干旱、半干旱和半湿润地区,生态环境脆弱,近年来,在气候变化和人类活动影响下,植被覆盖状况发生了变化。因此需要对黄河流域植被覆盖的变化进行监测,进而掌握流域植被的动态变化特征。在此背景下,利用2000-2010年的250 m分辨率的MOD13Q1数据来研究黄河流域植被覆盖区域的NDVI时空变化特征。采用Theil-Sen Median趋势分析和Mann-Kendall检验来研究NDVI的变化趋势特征,通过对Theil-Sen Median趋势分析和Mann-Kendall检验的结果和Hurst指数的结果的叠加,来研究NDVI的可持续特征。研究表明:1)从空间分布上看,黄河流域NDVI呈现出西部和东南部高,北部低的特征;2)从时间变化特征上看,2000-2010年植被覆盖区域年均NDVI均值在0.3-0.4之间波动,其中2000-2004年NDVI波动较大,但自2005年以来NDVI呈现快速增长的趋势;3)从变化趋势上看,2000-2010年黄河流域植被改善的区域远远大于退化的区域,改善的区域占植被覆盖区域总面积的62.9%,退化的区域占27.7%,9.4%的区域NDVI稳定不变;4)从可持续性来看,86.0%的植被覆盖区域NDVI呈现正向可持续性,即NDVI的可持续性较强;由变化趋势与Hurst指数的耦合信息得出,持续改善的面积占植被覆盖区域总面积的53.7%,持续稳定不变的区域占7.8%,持续退化的区域占24.5%,另外14.0%的区域未来变化趋势无法确定,持续退化和未来变化趋势无法确定区域的植被变化状况需要研究人员继续关注。  相似文献   

17.
岳文泽  徐建华  徐丽华 《生态学报》2006,26(5):1450-1460
城市化过程中,农村的土壤、水面以及植被等土地覆被类型逐渐减少,取而代之的是由沥青、水泥以及金属等组成的不透水表面,这个过程导致地表水分蒸腾减少、径流加速、显热的存储和传输增加以及水质降低等一系列生态环境效应,其中最明显的两个特征就是土地覆被的植被减少、城市热岛的出现.而城市土地利用类型及其空间结构的生态环境效应同时又是城市生态学中的关键问题,其研究对优化城市功能分区和城市规划管理以及城市可持续发展等都具有重要意义.以上海市为例,采用Landsat7的ETM+为基本数据源,首先定量反演了每个像元内的陆地表面温度(LST)和植被指数(NDVI),然后利用GIS中的空间分析功能,将由于城市土地覆被所形成的生态环境效应综合到土地利用的图斑中来,按照这个思路对城市土地利用的生态环境效应进行研究.分析LST、NDVI在不同土地利用类型之间的差异以及二者之间的定量关系,并引入多样性指数(SHDI),讨论了不同土地利用的空间组合下,LST和NDVI的空间差异及相互关系.研究结果显示:LST和NDVI具有明显的相关性,LST大的区域对应NDVI一般都较小,反之亦然;中心城市LST表现出热岛效应,而NDVI则为低谷效应.通过Tamhance T2 post-hoc多重比较发现,LST以及NDVI在两两土地利用类型之间的差异不同.从土地利用斑块和类型两种尺度水平上建立了LST和NDVI的定量关系,二者具有明显负相关的线性关系,但在不同土地利用类型上二者关系并不同.其中工业仓储、交通用地与公园绿地、农业用地差异最为显著.它们和SHDI之间的关系揭示,LST与土地利用多样性具有正相关关系,而NDVI则与SHDI呈负相关关系,SHDI越大的地区,LST越大,而NDVI越小.由此,可以将LST、NDVI和SHDI作为三个基本指标,来定量评价城市土地利用类型、结构对生态环境的影响,以此作为城市功能分区中生态环境影响评价的参考.也为高性价比的中等分辨率遥感数据与GIS空间分析方法结合在城市规划中的应用提供了一种新的思路.  相似文献   

18.
Habitats are effective indicators of biodiversity. Remote sensing data and techniques are of great utility for their long-term monitoring. Habitat maps can be derived from land cover (LC) maps through rules obtained from expert knowledge and integrated with in situ data. Spatial (vegetation pattern) and temporal (phenology and water seasonality) relationships were explored and documented to infer reliable rules for LC (according to the Food and Agricultural Organization Land Cover Classification System (FAO-LCCS) taxonomy) to habitat (Annex I to the 92/43 EEC Directive and EUNIS) class translation. A coastal site in southern Italy was considered as study site for the definition and validation of such rules. Phenological data of the plant communities were collected on the basis of vegetation plots randomly distributed within the study site. Water seasonality was extracted from periodical observation of the water surface. Vegetation pattern was analyzed by means of vegetation survey along transects. The potentiality of rules, based on this specific expert knowledge, was tested in an experimental setting for habitat mapping. The overall accuracy of the habitat map was 75.1%. Such a result supports the usefulness of prior expert knowledge for habitat mapping from LCCS classes and disambiguation on one-to-many relations between LC/LU and habitat types.  相似文献   

19.
盐池县2000-2012年植被变化及其驱动力   总被引:4,自引:0,他引:4  
宋乃平  杜灵通  王磊 《生态学报》2015,35(22):7377-7386
荒漠草原区的植被对防治荒漠化、维护生态屏障具有决定性作用,宁夏盐池县作为其典型代表,近13年的植被变化深受气候变化和人类活动的综合影响。基于MODIS NDVI等数据,运用趋势分析、经验模态分解和空间叠置分析等方法,对盐池县2000—2012年的植被动态变化进行研究,结果表明:(1)2000—2012年盐池县NDVI在0.2—0.4之间呈波动上升趋势,上升幅度为0.078/10 a,上升趋势显著;总体来说,植被稳定性低,年际间波动或转换频繁、幅度大;(2)NDVI的波动分量与残余分量方差贡献率各占50%,且NDVI波动呈减弱趋势。促使NDVI波动的主控因子是年降水量,但其影响在减弱;(3)推动NDVI趋势性上升的主要因素是土地利用方式改善和类型变化,但土地利用方式改善对NDVI的贡献远远大于土地利用类型变化对NDVI的贡献。因此,荒漠草原区的生态改善应以保护为主,辅之以必要的生态重建,走以适度开发带动整体保护的道路。  相似文献   

20.
作为陆地生态系统的主体,植被的时空变化深刻地影响着景观格局和生态功能,深入理解植被动态及其对气候变化的响应,对于提高对生态过程的认识、加强生态管理具有重要意义。在一致性检验的基础上,利用中分辨率成像光谱仪(moderateresolution imaging Spectroradiometer,MODIS)的归一化植被指数(normalized Difference Vegetation Index,NDVI)数据集将新疆地区全球检测与模型研究组(Global Inventory Modeling and Mapping Studies,GIMMS)开发的NDVI数据集的时间序列拓展到2012年,探讨了生长季和各季节植被绿度、气候异常值的动态变化,分析了植被对气候变化的响应。研究结果显示,区域尺度和像元尺度GIMMS与MODIS NDVI之间的一致性较强。1982—2012年,研究区域生长季和各季节植被绿度呈显著增加趋势,但生长季存在明显阶段性:1998年前后分别呈显著增加和显著减少,夏季与秋季与生长季类似,而春季则不存在变化趋势的逆转。NDVI呈正异常值的面积比例与区域尺度NDVI的变化趋势一致;极端异常值、较大异常值多呈明显减少趋势,而一般异常值多呈增加趋势,NDVI的变化倾向于逐渐平稳。区域变暖趋势显著,降水量略有增加,潜在蒸散发显著提高,而湿润指数变化不明显。气温、潜在蒸散发主要在春季、秋季促进植被生长,而夏季降水量、湿润指数对植被生长的调节作用更为突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号