首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular beacons are stem-loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2'-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2'-O-methyl and 2'-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2'-O-methyl/RNA > 2'-deoxy/RNA > 2'-deoxy/DNA > 2'-O-methyl/DNA. The improved stability of the 2'-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2'-deoxy molecular beacons and RNA targets. However, the 2'-O-methyl molecular beacons hybridized to RNA more quickly than 2'-deoxy molecular beacons. For the pairs tested, the 2'-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

2.
In this study, an enzyme-amplified electrochemical biosensor was developed for detection of the promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene in acute promyelocytic leukemia (APL). This new sensor employs a hairpin locked nucleic acids (LNAs) probe dually labeled with biotin and carboxyfluorescein molecule (FAM). The probe is immobilized at a streptavidin-modified electrode surface via the biotin-streptavidin bridge, and FAM serves as an affinity tag for the peroxidase conjugate binding. Initially, the immobilized hairpin probe was in the "closed" state in the absence of the target, which shielded FAM from being approached by the bulky anti-FAM-HRP conjugate due to the steric effect. Target binding opens the hairpin structure of the probe, the probe undergoes a significant conformational change, forcing FAM away from the electrode. As a result, the FAM label becomes accessible by the anti-FAM-HRP, and the target hybridization event can be sensitively transduced via the enzymatically amplified electrochemical current signal. This new biosensor demonstrates its excellent specificity for single-base mismatch and able to detect as little as 83 fM target DNA even in the presence of human serum. We also employed this sensor to directly detect PCR real sample with satisfactory results.  相似文献   

3.
A microtiter-based assay system is described in which DNA hairpin probes with dangling ends and single-stranded, linear DNA probes were immobilized and compared based on their ability to capture single-strand target DNA. Hairpin probes consisted of a 16 bp duplex stem, linked by a T2-biotin·dT-T2 loop. The third base was a biotinylated uracil (UB) necessary for coupling to avidin coated microtiter wells. The capture region of the hairpin was a 3′ dangling end composed of either 16 or 32 bases. Fundamental parameters of the system, such as probe density and avidin adsorption capacity of the plates were characterized. The target DNA consisted of 65 bases whose 3′ end was complementary to the dangling end of the hairpin or to the linear probe sequence. The assay system was employed to measure the time dependence and thermodynamic stability of target hybridization with hairpin and linear probes. Target molecules were labeled with either a 5′-FITC, or radiolabeled with [γ-33P]ATP and captured by either linear or hairpin probes affixed to the solid support. Over the range of target concentrations from 10 to 640 pmol hybridization rates increased with increasing target concentration, but varied for the different probes examined. Hairpin probes displayed higher rates of hybridization and larger equilibrium amounts of captured targets than linear probes. At 25 and 45°C, rates of hybridization were better than twice as great for the hairpin compared with the linear capture probes. Hairpin–target complexes were also more thermodynamically stable. Binding free energies were evaluated from the observed equilibrium constants for complex formation. Results showed the order of stability of the probes to be: hairpins with 32 base dangling ends > hairpin probes with l6 base dangling ends > 16 base linear probes > 32 base linear probes. The physical characteristics of hairpins could offer substantial advantages as nucleic acid capture moieties in solid support based hybridization systems.  相似文献   

4.
An electrochemically amplified molecular beacon (EAMB) biosensor is constructed using thiolated hairpin DNA-ferrocene probes on gold electrode. The switching from "on" to "off" states of individual probes in the presence of complementary DNA target influences the electrode potential, besides the current, owing to changes in surface density of the electroactive hairpin DNA-ferrocene probes. The EAMB biosensor demonstrates linear range over 8 orders of magnitude with ultrasensitive detection limit of 2.3 × 10(-14)M for the quantification of a 21-mer DNA sequence. Its applicability is tested against PCR amplicons derived from genomic DNA of live Legionella pneumophila. Excellent specificity down to one and three nucleotides mismatches in another strain of L. pneumophila and a different bacterium species, respectively, is demonstrated.  相似文献   

5.
DNA microarray technology offers the possibility to analyze microbial communities without cultivation, thus benefiting biodiversity studies. We developed a DNA phylochip to assess phytoplankton diversity and transferred 18S rRNA probes from dot blot or fluorescent in situ hybridization (FISH) analyses to a microarray format. Similar studies with 16S rRNA probes have been done determined that in order to achieve a signal on the microarray, the 16S rRNA molecule had to be fragmented, or PCR amplicons had to be <150 bp in length to minimize the formation of a secondary structure in the molecule so that the probe could bind to the target site. We found different results with the 18S rRNA molecule. Four out of 12 FISH probes exhibited false-negative signals on the microarray; eight exhibited strong but variable signals using full-length 18S RNA molecules. A systematic investigation of the probe's accessibility to the 18S rRNA gene was made using Prymenisum parvum as the target. Fourteen additional probes identical to this target covered the regions not tested with existing FISH probes. Probes with a binding site in the first 900 bp of the gene generated positive signals. Six out of nine probes binding in the last 900 bp of the gene produced no signal. Our results suggest that although secondary structure affected probe binding, the effect is not the same for the 18S rRNA gene and the 16S rRNA gene. For the 16S rRNA gene, the secondary structure is stronger in the first half of the molecule, whereas in the 18S rRNA gene, the last half of the molecule is critical. Probe-binding sites within 18S rRNA gene molecules are important for the probe design for DNA phylochips because signal intensity appears to be correlated with the secondary structure at the binding site in this molecule. If probes are designed from the first half of the 18S rRNA molecule, then full-length 18S rRNA molecules can be used in the hybridization on the chip, avoiding the fragmentation and the necessity for the short PCR amplicons that are associated with using the 16S rRNA molecule. Thus, the 18S rRNA molecule is a more attractive molecule for use in environmental studies where some level of quantification is desired. Target size was a minor problem, whereas for 16S rRNA molecules target size rather than probe site was important.  相似文献   

6.
Preparation of synthetic tandem-repetitive probes for DNA fingerprinting   总被引:1,自引:0,他引:1  
DNA fingerprints are generated using probes that hybridize to hypervariable minisatellites, also known as variable number tandem repeat loci. Cloned minisatellites have served as the predominant source of DNA fingerprinting probes. A short segment within the repeat units of minisatellites, called the "core" sequence, is highly conserved within a family of related minisatellites, thereby allowing a single-cloned minisatellite to cross-hybridize to 20 to 40 other minisatellites. In this article, we describe a method for the synthetic preparation of polymeric core sequence probes for DNA fingerprinting. Unlike "monomeric" oligonucleotide probes, the polymeric probes mimic the tandem-repetitive structure of minisatellites, and thus each probe molecule can potentially form many sites of hybridization with a target minisatellite. The synthetic probes are cloned into plasmid DNA to provide a perpetual source of probe material.  相似文献   

7.
Molecular beacon (MB) is especially suited for detection of single nucleotide polymorphism (SNP), and the type of MB immobilized on the surface of microarray in particular, may detect multi-sample and multi-locus. However, the majority of MB needs to be labeled with fluorescence and quenching molecules on the two ends of the probe, and observed the reaction of fluorescence or complicated electrochemical signal produced hybridization of MB and target sequence by complex and expensive instruments. The "molecular beacon" and microarray designed appropriately in our study can produce visible light response signal induced by amplification effect of enzymatic color, and are avoided with the marker of fluorescence and quenching molecules and expensive instruments. The "molecular beacon" without fluorescence and quenching molecules is entitled as "hairpin DNA probe" by us for only the "hairpin" structure of traditional molecular beacon is adopted. The merits of two techniques, molecular beacon and amplification effect of enzymatic color, are successfully combined, and the technique is simple, sensitive and specific, to detect and compare the methylenetetrahydrofolate reductase (MTHFR) Gene C677T mutation of subjects between coronary heart disease (CHD) and control group. The results showed that MTHFR Gene C677T polymorphism is an independent risk factor for CHD.  相似文献   

8.
Most current microarray oligonucleotide probe design strategies are based on probe design factors (PDFs), which include probe hybridization free energy (PHFE), probe minimum folding energy (PMFE), dimer score, hairpin score, homology score and complexity score. The impact of these PDFs on probe performance was evaluated using four sets of microarray comparative genome hybridization (aCGH) data, which included two array manufacturing methods and the genomes of two species. Since most of the hybridizing DNA is equimolar in CGH data, such data are ideal for testing the general hybridization properties of almost all candidate oligonucleotides. In all our data sets, PDFs related to probe secondary structure (PMFE, hairpin score and dimer score) are the most significant factors linearly correlated with probe hybridization intensities. PHFE, homology and complexity score are correlating significantly with probe specificities, but in a non-linear fashion. We developed a new PDF, pseudo probe binding energy (PPBE), by iteratively fitting dinucleotide positional weights and dinucleotide stacking energies until the average residue sum of squares for the model was minimized. PPBE showed a better correlation with probe sensitivity and a better specificity than all other PDFs, although training data are required to construct a PPBE model prior to designing new oligonucleotide probes. The physical properties that are measured by PPBE are as yet unknown but include a platform-dependent component. A practical way to use these PDFs for probe design is to set cutoff thresholds to filter out bad quality probes. Programs and correlation parameters from this study are freely available to facilitate the design of DNA microarray oligonucleotide probes.  相似文献   

9.
Molecular beacons are stem–loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2′-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2′-O-methyl and 2′-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2′-O-methyl/RNA > 2′-deoxy/RNA > 2′-deoxy/DNA > 2′-O-methyl/DNA. The improved stability of the 2′-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2′-deoxy molecular beacons and RNA targets. However, the 2′-O-methyl molecular beacons hybridized to RNA more quickly than 2′-deoxy molecular beacons. For the pairs tested, the 2′-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

10.
We previously developed a method for monitoring the integrity of oligonucleotides in vitro and in vivo by quantitating fluorescence resonance energy transfer (FRET) between two different fluorochromes attached to a single oligonucleotide. As an extension of this analysis, we examined changes in the extent of FRET in the presence or absence of target nucleic acids with a specific sequence and a higher-ordered structure. In this system FRET was maximal when probes were free in solution and a decrease in FRET was evidence of successful hybridization. We used a single-stranded oligodeoxyribonucleotide labeled at its 5'-end and its 3'-end with 6-carboxyfluorescein and 6-carboxytetramethylrhodamine, respectively. Incubation of the probe with a single-stranded complementary oligonucleotide reduced the FRET. Moreover, a small change in FRET was also observed when the probe was incubated with an oligonucleotide in which the target site had been embedded in a stable hairpin structure. The decrease in the extent of FRET depended on the length of the stem region of the hairpin structure and also on the higher-ordered structure of the probe. These results indicate that this spectrofluorometric method and FRET probes can be used to estimate the efficacy of hybridization between a probe and its target site within highly ordered structures. This conclusion based on changes in FRET was confirmed by gel-shift assays.  相似文献   

11.
A convenient and nonradioactive method for DNA hybridization tests termed the "Universal probe system" has been developed. This method is based on the principle of sandwich hybridization. This system consists of two single-stranded DNA probes (a primary probe and a biotin-labeled secondary probe). The primary probe is prepared from a chimeric phage-plasmid vector containing the complementary sequence to a target gene. The secondary probe has a sequence complementary to the vector portion of the primary probe and is labeled with biotin via the transamination reaction. An advantage of this method is that the single-stranded primary probe can be prepared with ease by using the chimeric phage-plasmid vector system, thereby avoiding tedious labeling of individually different probes. As the primary probe is not modified with biotin and other labels, it conserves the sequence to be hybridized with a target. Accordingly, the primary probe containing a relatively short hybridizing region (ca. 50 bp) can efficiently hybridize with the target. In fact, the universal probe is sensitive enough to detect a single-copy human gene on Southern blots.  相似文献   

12.
The design of a dsDNA-sensitive fluorescent bioconjugate capable of targeting a specific DNA sequence with high efficiency is described. The bioconjugate has the molecular recognition features of the polypeptide from a DNA-binding protein and the dsDNA-dependent fluorescence of an intercalating dye. The DNA sequence selectivity of the probe was characterized, as were the changes in photophysical properties of the dye upon covalent linkage to the peptide to assess whether such bioconjugates could function as molecular probes of gene sequences. The oxazole yellow-peptide bioconjugate exhibits DNA recognition and binding affinity comparable to the native Hin recombinase protein. Examination of photophysical effects to dye conjugation indicates a negligible affect on the fluorescence quantum yield. Fluorescence studies indicate this molecular probe is useful to determine the presence of a given DNA target sequence and gives negligible fluorescence in the absence of a given target site. Using the synthetic route described here, bioconjugates could be designed using different combinations of DNA recognition polypeptides and cyanine dyes to generate an array of sequence specific and wavelength specific probes.  相似文献   

13.
Single stranded DNA often forms stable secondary structures under physiological conditions. These DNA secondary structures play important physiological roles. However, the analysis of such secondary structure folded DNA is often complicated because of its high thermodynamic stability and slow hybridization kinetics. In this article, we demonstrate that Y-shaped junction probes could be used for rapid and highly efficient detection of secondary structure folded DNA. Our approach contained a molecular beacon (MB) probe and an assistant probe. In the absence of target, the MB probe failed to hybridize with the assistant probe. Whereas, the MB probe and the assistant probe could cooperatively unwind the secondary structure folded DNA target to form a ternary Y-shaped junction structure. In this condition, the MB probe was also opened, resulting in separating the fluorophores from the quenching moiety and emitting the fluorescence signal. This approach allowed for the highly sensitive detection of secondary structure folded DNA target, such as a tau specific DNA fragment related to Alzheimer's disease in this case. Additionally, this approach showed strong SNPs identifying capability. Furthermore, it was noteworthy that this newly proposed approach was capable of detecting secondary structure folded DNA target in cell lysate samples.  相似文献   

14.
In this report, we demonstrate a label-free genosensor based on DNA hairpins coupled to gold coated sensor surfaces. The hairpin probes were labeled with a thiolated moiety for immobilization at the 5' end and with a fluorophore for signal transduction at the 3' end. In the absence of the complement, the fluorophore is quenched by energy transfer to the gold surface. Addition of the target sequence leads to the hairpin unfolding, and releases the fluorescent signal. This built-in property, using a gold film as both the immobilizing substrate and quenching agent, has the advantage of simplicity in design and ease of further integration. Our results showed that lengths of both the stem and the loop structures have significant effects on the sensor performance. Hybridization kinetics was investigated for various probe/target lengths and concentrations. An optimized hairpin probe gave a fluorescent signal increase of 39 folds after hybridization, which is much higher than the earlier reported results. A limit of detection (LOD) down to 0.3 nM for the complementary target DNA detection has been achieved. The developed sensor was further successfully applied for the detection of single-base mismatch targets, as well as for the direct detection of PCR products.  相似文献   

15.
16.
A general procedure for the cross-linking of enzyme to DNA has been developed for use as a nonradioactive probe. In this method, DNA is transaminated with diaminopropane to introduce primary amino groups into the cytosine residues. Then the amino groups are converted to thiol groups using a heterobifunctional cross-linker. The thiolated DNA is conjugated with the maleimide-introduced enzyme. With this method, alkaline phosphatase was cross-linked to a single-stranded DNA (sspUCRf1). The conjugate was able to detect 5 pg of target DNA (pUCf1 plasmid, 3.2 kbp) fixed onto the nitrocellulose membrane, using a colorimetric assay. The enzyme-conjugated DNA was applied to "the universal probe system," which consisted of two single-stranded DNA probes (a primary probe and a labeled secondary probe). Using alkaline phosphatase-conjugated sspUCRf1 DNA as the secondary probe, the c-myc gene and HBV DNA were detected effectively on Southern and dot-blot hybridization.  相似文献   

17.
18.
The specific structural features of stem-loop (hairpin) DNA constructs provide increased specificity of target recognition. Recently, several robust assays have been developed that exploit the potential of structurally constrained oligonucleotides to hybridize with their cognate targets. Here, I review new diagnostic approaches based on the formation of stem-loop DNA oligonucleotides: molecular beacon methodology, suppression PCR approaches and the use of hairpin probes in DNA microarrays. The advantages of these techniques over existing ones for sequence-specific DNA detection, amplification and manipulation are discussed.  相似文献   

19.
Applications of universal probe on DNA hybridization   总被引:1,自引:0,他引:1  
A convenient method for DNA hybridization termed "Universal probe" is described which is based on the principle of sandwich hybridization. This system consists of two probes: primary probe which is single-stranded DNA prepared from a chimeric phage-plasmid vector containing the complementary sequence to a target; and labeled secondary probe which has an opposite strand of the primary probe without the complementary sequence. By use this universal probe human beta-globin gene was able to be detected on Southern blots of genomic DNA. A potential advantage of this method is that the single-stranded primary probe is prepared easily by the chimeric phage-plasmid vector system and tedious labeling is not needed each time.  相似文献   

20.
Jin Y  Yao X  Liu Q  Li J 《Biosensors & bioelectronics》2007,22(6):1126-1130
In this paper, a label-free, rapid and simple method was proposed to study the hybridization specificity of hairpin DNA probe using methylene blue (MB) as a hybridization indicator. Thiolated hairpin DNA probe was immobilized on the gold electrode by self-assembly. The voltammetric signals of MB were investigated at these modified electrodes by means of cyclic voltammetry (CV) detection. Single-base mutation oligonucleotide and random oligonucleotide can be easily discriminated from complementary target DNA. The effect of mismatch position in target DNA was investigated. Experimental results showed that mutation in the center of target DNA had greatest effect on the hybridization with hairpin DNA probe. The relationship between electrochemical responses and DNA target concentration was also studied. The reduction current of MB intercalation decreased with increasing the concentration of target DNA. Taken together, these experiments demonstrate that the hybridization indicator MB provides great promise for rapid and specific measurement of target DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号