共查询到20条相似文献,搜索用时 0 毫秒
1.
Z��lie Julia Emilie Duchene Natalie Fournier Natacha Bellanger M. John Chapman Wilfried Le Goff Maryse Guerin 《Journal of lipid research》2010,51(11):3350-3358
Lipid and cholesterol metabolism in the postprandial phase is associated with both quantitative and qualitative remodeling of HDL particle subspecies that may influence their anti-atherogenic functions in the reverse cholesterol transport pathway. We evaluated the capacity of whole plasma or isolated HDL particles to mediate cellular free cholesterol (FC) efflux, cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer, and selective hepatic CE uptake during the postprandial phase in subjects displaying type IIB hyperlipidemia (n = 16). Postprandial, large HDL2 displayed an enhanced capacity to mediate FC efflux via both scavenger receptor class B type I (SR-BI)-dependent (+12%; P < 0.02) and ATP binding cassette transporter G1 (ABCG1)-dependent (+31%; P < 0.008) pathways in in vitro cell systems. In addition, the capacity of whole postprandial plasma (4 h and 8 h postprandially) to mediate cellular FC efflux via the ABCA1-dependent pathway was significantly increased (+19%; P < 0.0003). Concomitantly, postprandial lipemia was associated with elevated endogenous CE transfer rates from HDL2 to apoB lipoproteins and with attenuated capacity (−17%; P < 0.02) of total HDL to deliver CE to hepatic cells. Postprandial lipemia enhanced SR-BI and ABCG1-dependent efflux to large HDL2 particles. However, postprandial lipemia is equally associated with deleterious features by enhancing formation of CE-enriched, triglyceride-rich lipoprotein particles through the action of CETP and by reducing the direct return of HDL-CE to the liver. 相似文献
2.
Lee JY Karwatsky J Ma L Zha X 《American journal of physiology. Cell physiology》2011,301(4):C886-C894
ATP-binding cassette protein A1 (ABCA1) is a key plasma membrane protein required for the efflux of cellular cholesterol to extracellular acceptors, particularly to apolipoprotein A-I (apoA-I). This process is essential to maintain cholesterol homeostasis in the body. The detailed molecular mechanisms, however, are still insufficiently understood. Also, the molecular identity of ABCA1, i.e., channel, pump, or flippase, remains unknown. In this study we analyzed extracellular ATP levels in the medium of ABCA1-expressing BHK cells and RAW macrophages and compared them to the medium of nonexpressing cells. We found that extracellular ATP concentrations are significantly elevated when cells express ABCA1. Importantly, a dysfunctional ABCA1 mutant (A937V), when expressed similarly as wild-type ABCA1, is unable to raise extracellular ATP concentration, which suggests a casual relationship between functional ABCA1 and elevated extracellular ATP. To explore the physiological role of extracellular ATP, we analyzed ABCA1-mediated cholesterol efflux under conditions where extracellular ATP levels were modulated. We found that increasing extracellular ATP within the physiological range, i.e., <μM, promotes cholesterol efflux to apoA-I. On the other hand, removing extracellular ATP, either by adding apyrase to the medium or by expressing a plasma membrane-bound ectonucleotidase, CD39, abolishes cholesterol efflux to apoA-I. On the basis of these results, we conclude that, through direct or indirect mechanisms, ABCA1 functions to raise ATP levels in the medium. This elevated extracellular ATP is required for ABCA1-mediated cholesterol efflux to apoA-I. 相似文献
3.
Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. 总被引:10,自引:0,他引:10
The low density lipoproteins (LDL) of human plasma consist of a series of discrete particle subspecies of distinct physicochemical, immunological, and hydrodynamic properties. Such structural differences are intimately linked to the metabolic heterogeneity of circulating LDL in vivo. The current studies were designed to evaluate and compare the interaction of discrete LDL subspecies from normolipidemic subjects with the LDL receptor. Plasma LDL of d 1.019-1.063 g/ml from healthy males were fractionated into 15 subspecies of defined physicochemical characteristics by isopycnic density gradient ultracentrifugation as described earlier (Chapman et al., J. Lipid Res. 1988. 29: 442-458). The major LDL subspecies, LDL-5 to LDL-10, exhibited an overall range in density from 1.0244 to 1.0435 g/ml; individual subspecies increased in density by increments of 0.027 (LDL-5), 0.026 (LDL-6), 0.030 (LDL-7), 0.031 (LDL-8), 0.035 (LDL-9), and 0.042 g/ml (LDL-10), respectively. Taken together, these subspecies accounted for approximately 70% of the total mass of LDL of d 1.019-1.063 g/ml; their cholesterol: protein ratios decreased from 1.70 to 1.12 and particle size from 275 to 260 A with increase in density. ApoB-100 was the unique protein component in subspecies 5-8, with trace amounts (less than 0.2% of apoLDL) of both apoA-I and apoE in subspecies 9 and 10. The interaction of individual LDL subspecies with the LDL receptor on cultured human U-937 monocyte-like cells was compared by determining receptor binding affinities at 4 degrees C. Scatchard analysis of specific binding curves demonstrated a single class of binding site for each subspecies. The lowest dissociation constants were displayed by LDL subspecies 6 (Kd 5.71 nM), 7 (Kd 5.24 nM) and 8 (Kd 4.67 nM), while subspecies 5, 9, and 10 displayed significantly higher Kd values (8.35, 7.20, and 6.87 nM, respectively). Competitive displacement studies at 4 degrees C, in which unlabeled subspecies from the same gradient series competed for binding with 125I-labeled LDL subspecies, confirmed the relative binding affinities of these subspecies. As the hydrophobic lipid core of LDL undergoes a thermotropic transition at approximately 37 degrees C, which may in turn influence the surface structure of the particle, internalization and degradation studies were performed at 37 degrees C. No effect of temperature was detectable; again, LDL subspecies at each extreme of the density distribution (LDL-5 and LDL-10) displayed significantly lower binding affinities for the LDL receptor than that from the peak region (LDL-7).(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
4.
Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface 总被引:6,自引:0,他引:6
de la Llera-Moya M Rothblat GH Connelly MA Kellner-Weibel G Sakr SW Phillips MC Williams DL 《Journal of lipid research》1999,40(3):575-580
In addition to its effect on high density lipoprotein (HDL) cholesteryl ester (CE) uptake, scavenger receptor BI (SR-BI) was recently reported to stimulate free cholesterol (FC) flux from Chinese hamster ovary (CHO) cells stably expressing mouse SR-BI, a novel function of SR-BI that may play a role in cholesterol removal from the vessel wall where the receptor can be found. It is possible that SR-BI stimulates flux simply by tethering acceptor HDL particles in close apposition to the cell surface thereby facilitating the movement of cholesterol between the plasma membrane and HDL. To test this, we used transiently transfected cells and compared the closely related class B scavenger receptors mouse SR-BI and rat CD36 for their ability to stimulate cholesterol efflux as both receptors bind HDL with high affinity. The results showed that, although acceptor binding to SR-BI may contribute to efflux to a modest extent, the major stimulation of FC efflux occurs independently of acceptor binding to cell surface receptors. Instead our data indicate that SR-BI mediates alterations to membrane FC domains which provoke enhanced bidirectional FC flux between cells and extracellular acceptors. 相似文献
5.
P Roma A L Catapano S M Bertulli L Varesi R Fumagalli F Bernini 《Biochemical and biophysical research communications》1990,171(1):123-131
Oxidatively modified low density lipoproteins (Ox-LDL) may be involved in determining the formation of foam cells by inducing cellular cholesteryl ester accumulation. We studied the effect of copper oxidized LDL (Ox-LDL) on cholesterol accumulation and esterification in murine macrophages. Ox-LDL (44 micrograms/ml of lipoprotein cholesterol) increased the total cholesterol content of the cells from 29 to 69 micrograms/mg cell protein. Free cholesterol accounted for 85% of this increase. Acetyl LDL (Ac-LDL) (38 micrograms/ml of lipoprotein cholesterol), raised total cellular cholesterol content to a similar extent (76 micrograms/mg cell protein), however only 25% of the accumulated cholesterol was unesterified. When ACAT activity was determined after incubation of J774 cell with Ox- or Ac-LDL, Ox-LDL were 12 times less effective than Ac-LDL in stimulating cholesteryl ester formation. This was not due to an inhibition of ACAT by Ox-LDL since these lipoproteins failed to inhibit pre activated enzyme in cholesteryl ester-loaded macrophages. The uptake of 125I-Ox-LDL: was 175% that of 125I-Ac-LDL, while degradation was only 20%. All together these data suggest an altered intracellular processing of Ox-LDL, which may be responsible for free cholesterol accumulation. 相似文献
6.
Glaros EN Kim WS Quinn CM Wong J Gelissen I Jessup W Garner B 《The Journal of biological chemistry》2005,280(26):24515-24523
Cellular glycosphingolipid (GSL) storage is known to promote cholesterol accumulation. Although physical interactions between GSLs and cholesterol are thought to cause intracellular cholesterol "trapping," it is not known whether cholesterol homeostatic mechanisms are also impaired under these conditions. ApoA-I-mediated cholesterol efflux via ABCA1 (ATP-binding cassette transporter A1) is a key regulator of cellular cholesterol balance. Here, we show that apoA-I-mediated cholesterol efflux was inhibited (by up to 53% over 8 h) when fibroblasts were treated with lactosylceramide or the glucocerebrosidase inhibitor conduritol B epoxide. Furthermore, apoA-I-mediated cholesterol efflux from fibroblasts derived from patients with genetic GSL storage diseases (Fabry disease, Sandhoff disease, and GM1 gangliosidosis) was impaired compared with control cells. Conversely, apoA-I-mediated cholesterol efflux from fibroblasts and cholesterol-loaded macrophage foam cells was dose-dependently stimulated (by up to 6-fold over 8 h) by the GSL synthesis inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). Unexpectedly, a structurally unrelated GSL synthesis inhibitor, N-butyldeoxynojirimycin, was unable to stimulate apoA-I-mediated cholesterol efflux despite achieving similar GSL depletion. PDMP was found to up-regulate ABCA1 mRNA and protein expression, thereby identifying a contributing mechanism for the observed acceleration of cholesterol efflux to apoA-I. This study reveals a novel defect in cellular cholesterol homeostasis induced by GSL storage and identifies PDMP as a new agent for enhancing cholesterol efflux via the ABCA1/apoA-I pathway. 相似文献
7.
Stein O Ben-Naim M Dabach Y Hollander G Stein Y 《Biochemical and biophysical research communications》2002,290(5):1376-1381
Cholesterol efflux from peritoneal macrophages of mice C57BL/6 susceptible and C3H resistant to atherosclerosis was compared, using apoprotein A-I as acceptor. The elicited macrophages were labeled with 3H-cholesterol and cholesterol enriched by incubation for 24 h with acetylated LDL. After incubation for 6 or 24 h, 3H-cholesterol efflux to free apoA-I (10 microg/ml) was significantly higher with macrophages derived from C3H mice compared to C57BL/6 mice. The cells were also pretreated with 0.3-0.45 mM cyclic AMP, 10 microM 9-cis-retinoic acid or 10 microM 22(R)-hydroxycholesterol, RXR and LXR ligands. Treatment with cyclic AMP, RXR, or LXR ligands, resulted in enhancement of 3H-cholesterol efflux in both strains. Under all conditions, 3H-cholesterol efflux was significantly higher in C3H compared to C57BL/6 macrophages. In conclusion, the higher cholesterol efflux from C3H macrophages could contribute toward the resistance of this strain to diet-induced atherosclerosis despite hypercholesterolemia. 相似文献
8.
Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway 总被引:10,自引:0,他引:10
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains. 相似文献
9.
The selective uptake of high density lipoprotein (HDL) cholesteryl ester (CE) by the scavenger receptor class B type I (SR-BI) is well documented. However, the effect of altered HDL composition, such as occurs in hyperlipidemia, on this important process is not known. This study investigated the impact of variable CE and triglyceride (TG) content on selective uptake. CE selective uptake by Y1 and HepG2 cells was strongly affected by modification of either the CE or TG content of HDL. Importantly, TG, like CE, was selectively taken up by a dose-dependent, saturable process in these cells. As shown by ACTH up-regulation and receptor overexpression experiments, SR-BI mediated the selective uptake of both CE and TG. With in vitro modified HDLs of varying CE and TG composition, the selective uptake of CE and TG was dependent on the abundance of each lipid within the HDL particle. Furthermore, total selective uptake (CE + TG) remained constant, indicating that these lipids competed for cellular uptake. These data support a novel mechanism whereby SR-BI binds HDL and mediates the incorporation of a nonspecific portion of the HDL lipid core. In this way, TG directly affects the ability of HDL to donate CE to cells. Processes that raise the TG/CE ratio of HDL will impair the delivery of CE to cells via this receptor and may compromise the efficiency of sterol balancing pathways such as reverse cholesterol transport. 相似文献
10.
NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol 总被引:1,自引:0,他引:1
Benjannet S Rhainds D Essalmani R Mayne J Wickham L Jin W Asselin MC Hamelin J Varret M Allard D Trillard M Abifadel M Tebon A Attie AD Rader DJ Boileau C Brissette L Chrétien M Prat A Seidah NG 《The Journal of biological chemistry》2004,279(47):48865-48875
The discovery of autosomal dominant hypercholesterolemic patients with mutations in the PCSK9 gene, encoding the proprotein convertase NARC-1, resulting in the missense mutations suggested a role in low density lipoprotein (LDL) metabolism. We show that the endoplasmic reticulum-localized proNARC-1 to NARC-1 zymogen conversion is Ca2+-independent and that within the zymogen autocatalytic processing site SSVFAQ [downward arrow]SIP Val at P4 and Pro at P3' are critical. The S127R and D374Y mutations result in approximately 50-60% and > or =98% decrease in zymogen processing, respectively. In contrast, the double [D374Y + N157K], F216L, and R218S natural mutants resulted in normal zymogen processing. The cell surface LDL receptor (LDLR) levels are reduced by 35% in lymphoblasts of S127R patients. The LDLR levels are also reduced in stable HepG2 cells overexpressing NARC-1 or its natural mutant S127R, and this reduction is abrogated in the presence of 5 mm ammonium chloride, suggesting that overexpression of NARC-1 increases the turnover rate of the LDLR. Adenoviral expression of wild type human NARC-1 in mice resulted in a maximal approximately 9-fold increase in circulating LDL cholesterol, while in LDLR-/- mice a delayed approximately 2-fold increase in LDL cholesterol was observed. In conclusion, NARC-1 seems to affect both the level of LDLR and that of circulating apoB-containing lipoproteins in an LDLR-dependent and -independent fashion. 相似文献
11.
Connelly MA de la Llera-Moya M Monzo P Yancey PG Drazul D Stoudt G Fournier N Klein SM Rothblat GH Williams DL 《Biochemistry》2001,40(17):5249-5259
Scavenger receptor BI (SR-BI) mediates the selective uptake of high-density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without degradation of the HDL particle. In addition, SR-BI stimulates the bi-directional flux of free cholesterol (FC) between cells and lipoproteins, an activity that may be responsible for net cholesterol efflux from peripheral cells as well as the rapid hepatic clearance of FC from plasma HDL. SR-BI also increases cellular cholesterol mass and alters cholesterol distribution in plasma membrane domains as judged by the enhanced sensitivity of membrane cholesterol to extracellular cholesterol oxidase. In contrast, CD36, a closely related class B scavenger receptor, has none of these activities despite binding HDL with high affinity. In the present study, analyses of chimeric SR-BI/CD36 receptors and domain-deleted SR-BI have been used to test the various domains of SR-BI for functional activities related to HDL CE selective uptake, bi-directional FC flux, and the alteration of membrane cholesterol mass and distribution. The results show that each of these activities localizes to the extracellular domain of SR-BI. The N-terminal cytoplasmic tail and transmembrane domains appear to play no role in these activities other than targeting the receptor to the plasma membrane. The C-terminal tail of SR-BI is dispensable for activity as well for targeting to the plasma membrane. Thus, multiple distinct functional activities are localized to the SR-BI extracellular domain. 相似文献
12.
The role of apolipoprotein A-I helix 10 in apolipoprotein-mediated cholesterol efflux via the ATP-binding cassette transporter ABCA1 总被引:3,自引:0,他引:3
Panagotopulos SE Witting SR Horace EM Hui DY Maiorano JN Davidson WS 《The Journal of biological chemistry》2002,277(42):39477-39484
Recent studies of Tangier disease have shown that the ATP-binding cassette transporter A1 (ABCA1)/apolipoprotein A-I (apoA-I) interaction is critical for high density lipoprotein particle formation, apoA-I integrity, and proper reverse cholesterol transport. However, the specifics of this interaction are unknown. It has been suggested that amphipathic helices of apoA-I bind to a lipid domain created by the ABCA1 transporter. Alternatively, apoA-I may bind directly to ABCA1 itself. To better understand this interaction, we created several truncation mutants of apoA-I and then followed up with more specific point mutants and helix translocation mutants to identify and characterize the locations of apoA-I required for ABCA1-mediated cholesterol efflux. We found that deletion of residues 221-243 (helix 10) abolished ABCA1-mediated cholesterol efflux from cultured RAW mouse macrophages treated with 8-bromo-cAMP. Point mutations in helix 10 that affected the helical charge distribution reduced ABCA1-mediated cholesterol efflux versus the wild type. We noted a strong positive correlation between cholesterol efflux and the lipid binding characteristics of apoA-I when mutations were made in helix 10. However, there was no such correlation for helix translocations in other areas of the protein as long as helix 10 remained intact at the C terminus. From these observations, we propose an alternative model for apolipoprotein-mediated efflux. 相似文献
13.
Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells 总被引:6,自引:0,他引:6
A Steinmetz R Barbaras N Ghalim V Clavey J C Fruchart G Ailhaud 《The Journal of biological chemistry》1990,265(14):7859-7863
Cholesterol efflux was studied in cultured mouse adipose cells after preloading with low density lipoprotein cholesterol. Exposure to complexes containing human apolipoprotein A-IV and L-alpha-dimyristoylphosphatidylcholine (DMPC) as well as to human lipoprotein particles containing apolipoprotein A-IV but not apolipoprotein A-I and particles containing apolipoproteins A-IV and A-I showed that both artificial and native apolipoprotein A-IV-containing particles were able to promote cholesterol efflux at 37 degrees C as a function of time and concentration. The half-maximal concentration was found to be 0.3 X 10(-6) M for apolipoprotein A-IV.DMPC complexes. Binding experiments performed in intact cells at 4 degrees C with labeled apolipoprotein A-IV.DMPC complexes showed the existence of specific binding sites, with a Kd value of 0.32 x 10(-6) M and a maximal binding capacity of 223,000 sites/cell. By cross-competition experiments with labeled and unlabeled complexes containing apolipoprotein A-IV, A-I, or A-II, it appeared that all three apolipoproteins bind to the same cell-surface recognition sites. It is suggested that apolipoprotein A-IV, which is present in the interstitial fluid surrounding adipose cells in vivo at concentrations similar to those required in vitro for the promotion of cholesterol efflux, plays a critical role in cholesterol removal from peripheral cells. 相似文献
14.
The alpha 1/beta 1 and alpha 6/beta 1 integrin heterodimers mediate cell attachment to distinct sites on laminin 总被引:27,自引:27,他引:27
下载免费PDF全文

D E Hall L F Reichardt E Crowley B Holley H Moezzi A Sonnenberg C H Damsky 《The Journal of cell biology》1990,110(6):2175-2184
This study was undertaken to determine the roles of individual alpha/beta 1 integrin heterodimers in promoting cellular interactions with the different attachment-promoting domains of laminin (LN). To do this, antibodies to the integrin beta 1 subunit or to specific integrin alpha subunits were tested for effects on cell attachment to LN, to elastase fragments E1-4 and E1, derived from the short arms and core of LN's cruciform structure, and to fragment E8 derived from the long arm of this structure. The human JAR choriocarcinoma cells used in this study attached to LN and to fragments E1 and E8. Attachment to E1-4 required a much higher substrate coating concentration, suggesting that it is a poor substrate for JAR cell attachment. The ability of cells to attach to different LN domains suggested the presence of more than one LN receptor. These multiple LN receptors were shown to be beta 1 integrin heterodimers because antibodies to the integrin beta 1 subunit inhibited attachment of JAR cells to LN and its three fragments. To identify the individual integrin alpha/beta 1 heterodimers that mediate interactions with these LN domains, mAbs specific for individual beta 1 heterodimers in human cells were used to study JAR cell interactions with LN and its fragments. An anti-alpha 6/beta 1-specific mAb, GoH3, virtually eliminated cell attachment to E8 and partially inhibited attachment to E1 and intact LN. Thus the major alpha 6/beta 1 attachment domain is present in fragment E8. An alpha 1/beta 1-specific mAb (S2G3) strongly inhibited cell attachment to collagen IV and partially inhibited JAR attachment to LN fragment E1. Thus, the alpha 1/beta 1 heterodimer is a dual receptor for collagen IV and LN, interacting with LN at a site in fragment E1. In combination, the anti-alpha 1- and anti-alpha 6-specific antibodies completely inhibited JAR cell attachment to LN and fragment E1. Thus, the alpha 1/beta 1 and alpha 6/beta 1 integrin heterodimers each function as LN receptors and act together to mediate the interactions of human JAR choriocarcinoma cells with LN. 相似文献
15.
SK Raghuwanshi Y Su V Singh K Haynes A Richmond RM Richardson 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(6):2824-2832
The chemokine receptors, CXCR1 and CXCR2, couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. Upon activation by CXCL8, these receptors become phosphorylated, desensitized, and internalized. In this study, we investigated the role of different G protein-coupled receptor kinases (GRKs) in CXCR1- and CXCR2-mediated cellular functions. To that end, short hairpin RNA was used to inhibit GRK2, 3, 5, and 6 in RBL-2H3 cells stably expressing CXCR1 or CXCR2, and CXCL8-mediated receptor activation and regulation were assessed. Inhibition of GRK2 and GRK6 increased CXCR1 and CXCR2 resistance to phosphorylation, desensitization, and internalization, respectively, and enhanced CXCL8-induced phosphoinositide hydrolysis and exocytosis in vitro. GRK2 depletion diminished CXCR1-induced ERK1/2 phosphorylation but had no effect on CXCR2-induced ERK1/2 phosphorylation. GRK6 depletion had no significant effect on CXCR1 function. However, peritoneal neutrophils from mice deficient in GRK6 (GRK6(-/-)) displayed an increase in CXCR2-mediated G protein activation but in vitro exhibited a decrease in chemotaxis, receptor desensitization, and internalization relative to wild-type (GRK6(+/+)) cells. In contrast, neutrophil recruitment in vivo in GRK6(-/-) mice was increased in response to delivery of CXCL1 through the air pouch model. In a wound-closure assay, GRK6(-/-) mice showed enhanced myeloperoxidase activity, suggesting enhanced neutrophil recruitment, and faster wound closure compared with GRK6(+/+) animals. Taken together, the results indicate that CXCR1 and CXCR2 couple to distinct GRK isoforms to mediate and regulate inflammatory responses. CXCR1 predominantly couples to GRK2, whereas CXCR2 interacts with GRK6 to negatively regulate receptor sensitization and trafficking, thus affecting cell signaling and angiogenesis. 相似文献
16.
Previous studies have shown that oxidation of low-density lipoprotein (oxLDL) results in its recognition by scavenger receptors on macrophages. Whereas blockage of lysyl residues on apoB-100 of oxLDL by lipid peroxidation products appears to be critical for recognition by the scavenger receptor class A (SR-A), modification of the lipid moiety has been suggested to be responsible for recognition by the scavenger class B receptor, CD36. We studied the recognition by scavenger receptors of oxidized LDL in which lysyl residues are blocked prior to oxidation through methylation [ox(m)LDL]. This permits us to minimize any contribution of modified apoB-100 to the recognition of oxLDL, but does not disrupt the native configuration of lipids in the particle. We found that ox(m)LDL was recognized by receptors on mouse peritoneal macrophages (MPM) almost as well as oxLDL. Ox(m)LDL was recognized by CD36-transfected cells but not by SR-A-transfected cells. Oxidized phospholipids (oxPC) transferred from oxLDL or directly from oxPC to LDL, conveyed recognition by CD36-transfected cells, confirming that CD36 recognized unbound oxidized phospholipids in ox(m)LDL. Collectively, these results suggest that oxPC not adducted to apoB within the intact oxLDL particle are recognized by the macrophage scavenger receptor CD36, that these lipids are not recognized by SR-A, and that they can transfer from oxidized to unoxidized LDL and induce CD36 recognition. 相似文献
17.
Kaplan M Aviram M Knopf C Keidar S 《Biochemical and biophysical research communications》2002,290(5):1529-1534
Impaired cellular cholesterol efflux in cells of the arterial wall is suggested to be involved in the pathogenesis of atherosclerosis. Since angiotensin II (Ang-II) is implicated in the development of atherosclerosis, the aim of the present study was to determine whether Ang-II could affect macrophage cholesterol efflux. Incubation of increasing concentrations of Ang-II (10(-10)-10(-7) M) with mouse peritoneal macrophages that were prelabeled with [3H]cholesterol led to a significant decrease in HDL-induced macrophage cholesterol efflux, by up to 70% compared to control cells incubated without Ang-II. Ang-II specifically increased the plasma membrane unesterified cholesterol content, the substrate for HDL-induced cholesterol efflux. The inhibitory effect of Ang-II on macrophage cholesterol efflux was found to be mediated by the angiotensin II type 1 (AT-1) receptor, since addition of the AT-1 antagonist Losartan completely blocked the inhibitory effect of Ang-II on the macrophage cholesterol efflux. We thus conclude that Ang-II atherogenicity may be related, at least in part, to its inhibitory effect on macrophage cholesterol efflux, thus leading to cellular cholesterol accumulation, the hallmark of early atherogenesis. 相似文献
18.
ABCA1 is essential for efficient basolateral cholesterol efflux during the absorption of dietary cholesterol in chickens 总被引:4,自引:0,他引:4
Mulligan JD Flowers MT Tebon A Bitgood JJ Wellington C Hayden MR Attie AD 《The Journal of biological chemistry》2003,278(15):13356-13366
The ATP-binding cassette transporter A1 (ABCA1) participates in the efflux of cholesterol from cells. It remains unclear whether ABCA1 functions to efflux cholesterol across the basolateral or apical membrane of the intestine. We used a chicken model of ABCA1 dysfunction, the Wisconsin hypoalpha mutant (WHAM) chicken, to address this issue. After an oral gavage of radioactive cholesterol, the percentage appearing in the bloodstream was reduced by 79% in the WHAM chicken along with a 97% reduction in the amount of tracer in high density lipoprotein. In contrast, the percentage of radioactive cholesterol absorbed from the lumen into the intestine was not affected by the ABCA1 mutation. Liver X receptor (LXR) agonists have been inferred to decrease cholesterol absorption through activation of ABCA1 expression. However, the LXR agonist T0901317 decreased cholesterol absorption equally in both wild type and WHAM chickens, indicating that the effect of LXR activation on cholesterol absorption is independent of ABCA1. The ABCA1 mutation resulted in accumulation of radioactive cholesterol ester in the intestine and the liver of the WHAM chicken (5.0- and 4.4-fold, respectively), whereas biliary lipid concentrations were unaltered by the WHAM mutation. In summary, ABCA1 regulates the efflux of cholesterol from the basolateral but not apical membrane in the intestine and the liver. 相似文献
19.
20.
Cholesterol elimination from the body involves reverse cholesterol transport from peripheral tissues in which the elimination of high density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol by the liver and subsequent biliary excretion as free cholesterol and bile acids are important. In situations of peripheral fat and cholesterol accumulation, such as obesity, these pathways may be overloaded, contributing to increased cholesterol deposition. Leptin has an important role in obesity, suppressing food intake and increasing energy expenditure. This hormone, which is absent in genetically obese ob/ob mice, is also thought to be involved in the coordination of lipid excretion pathways, although available data are somewhat inconsistent. We therefore studied the expression of the hepatic HDL receptor, scavenger receptor class B type I (SR-BI), and the LDL receptor as well as the rate-limiting enzyme in bile acid synthesis, cholesterol 7alpha-hydroxylase (Cyp7a1), in leptin-deficient ob/ob mice and their wild-type controls. In ob/ob mice, protein levels of both LDL receptor and SR-BI were reduced, whereas LDL receptor mRNA levels were increased and those of SR-BI were reduced, regardless of challenge with a 2% cholesterol diet. In ob/ob mice, the enzymatic activity and mRNA for Cyp7a1 were reduced, and the increase in response to dietary cholesterol was blunted. Upon short-term (2 days) treatment with leptin, a dose-dependent increase was seen in the SR-BI protein and mRNA, whereas the Cyp7a1 protein and mRNA were reduced. Our findings indicate that leptin is an important regulator of hepatic SR-BI expression and, thus, HDL cholesterol levels, whereas it does not stimulate Cyp7a1 and bile acid synthesis. 相似文献