首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: We present an extensive evaluation of different methods and criteria to detect remote homologs of a given protein sequence. We investigate two associated problems: first, to develop a sensitive searching method to identify possible candidates and, second, to assign a confidence to the putative candidates in order to select the best one. For searching methods where the score distributions are known, p-values are used as confidence measure with great success. For the cases where such theoretical backing is absent, we propose empirical approximations to p-values for searching procedures. RESULTS: As a baseline, we review the performances of different methods for detecting remote protein folds (sequence alignment and threading, with and without sequence profiles, global and local). The analysis is performed on a large representative set of protein structures. For fold recognition, we find that methods using sequence profiles generally perform better than methods using plain sequences, and that threading methods perform better than sequence alignment methods. In order to assess the quality of the predictions made, we establish and compare several confidence measures, including raw scores, z-scores, raw score gaps, z-score gaps, and different methods of p-value estimation. We work our way from the theoretically well backed local scores towards more explorative global and threading scores. The methods for assessing the statistical significance of predictions are compared using specificity--sensitivity plots. For local alignment techniques we find that p-value methods work best, albeit computationally cheaper methods such as those based on score gaps achieve similar performance. For global methods where no theory is available methods based on score gaps work best. By using the score gap functions as the measure of confidence we improve the more powerful fold recognition methods for which p-values are unavailable. AVAILABILITY: The benchmark set is available upon request.  相似文献   

2.
Current methods for identification of domains within protein sequences require either structural information or the identification of homologous domain sequences in different sequence contexts. Knowledge of structural domain boundaries is important for fold recognition experiments and structural determination by X-ray crystallography or nuclear magnetic resonance spectroscopy using the divide-and-conquer approach. Here, a new and conceptually simple method for the identification of structural domain boundaries in multiple protein sequence alignments is presented. Analysis of covariance at positions within the alignment is first used to predict 3D contacts. By the nature of the domain as an independent folding unit, inter-domain predicted contacts are fewer than intra-domain predicted contacts. By analysing all possible domain boundaries and constructing a smoothed profile of predicted contact density (PCD), true structural domain boundaries are predicted as local profile minima associated with low PCD. A training data set is constructed from 52 non-homologous two-domain protein sequences of known 3D structure and used to determine optimal parameters for the profile analysis. The alignments in the training data set contained 48 +/- 17 (mean +/- SD) sequences and lengths of 257 +/- 121 residues. Of the 47 alignments yielding predictions, 35% of true domain boundaries are predicted to within 15 amino acids by the local profile minimum with the lowest profile value. Including predictions from the second- and third-lowest local minima increases the correct domain boundary coverage to 60%, whereas the lowest five local minima cover 79% of correct domain boundaries. Through further profile analysis, criteria are presented which reliably identify subsets of more accurate predictions. Retrospective analysis of CASP3 targets shows predictions of sufficient accuracy to enable dramatically improved fold recognition results. Finally, a prediction is made for geminivirus AL1 protein which is in full agreement with biochemical data, yielding a plausible, novel threading result.  相似文献   

3.
Using a benchmark set of structurally similar proteins, we conduct a series of threading experiments intended to identify a scoring function with an optimal combination of contact-potential and sequence-profile terms. The benchmark set is selected to include many medium-difficulty fold recognition targets, where sequence similarity is undetectable by BLAST but structural similarity is extensive. The contact potential is based on the log-odds of non-local contacts involving different amino acid pairs, in native as opposed to randomly compacted structures. The sequence profile term is that used in PSI-BLAST. We find that combination of these terms significantly improves the success rate of fold recognition over use of either term alone, with respect to both recognition sensitivity and the accuracy of threading models. Improvement is greatest for targets between 10 % and 20 % sequence identity and 60 % to 80 % superimposable residues, where the number of models crossing critical accuracy and significance thresholds more than doubles. We suggest that these improvements account for the successful performance of the combined scoring function at CASP3. We discuss possible explanations as to why sequence-profile and contact-potential terms appear complementary.  相似文献   

4.
Hu Y  Dong X  Wu A  Cao Y  Tian L  Jiang T 《PloS one》2011,6(2):e17215
Fold recognition, or threading, is a popular protein structure modeling approach that uses known structure templates to build structures for those of unknown. The key to the success of fold recognition methods lies in the proper integration of sequence, physiochemical and structural information. Here we introduce another type of information, local structural preference potentials of 3-residue and 9-residue fragments, for fold recognition. By combining the two local structural preference potentials with the widely used sequence profile, secondary structure information and hydrophobic score, we have developed a new threading method called FR-t5 (fold recognition by use of 5 terms). In benchmark testings, we have found the consideration of local structural preference potentials in FR-t5 not only greatly enhances the alignment accuracy and recognition sensitivity, but also significantly improves the quality of prediction models.  相似文献   

5.
Shan Y  Wang G  Zhou HX 《Proteins》2001,42(1):23-37
A homology-based structure prediction method ideally gives both a correct fold assignment and an accurate query-template alignment. In this article we show that the combination of two existing methods, PSI-BLAST and threading, leads to significant enhancement in the success rate of fold recognition. The combined approach, termed COBLATH, also yields much higher alignment accuracy than found in previous studies. It consists of two-way searches both by PSI-BLAST and by threading. In the PSI-BLAST portion, a query is used to search for hits in a library of potential templates and, conversely, each potential template is used to search for hits in a library of queries. In the threading portion, the scoring function is the sum of a sequence profile and a 6x6 substitution matrix between predicted query and known template secondary structure and solvent exposure. "Two-way" in threading means that the query's sequence profile is used to match the sequences of all potential templates and the sequence profiles of all potential templates are used to match the query's sequence. When tested on a set of 533 nonhomologous proteins, COBLATH was able to assign folds for 390 (73%). Among these 390 queries, 265 (68%) had root-mean-square deviations (RMSDs) of less than 8 A between predicted and actual structures. Such high success rate and accuracy make COBLATH an ideal tool for structural genomics.  相似文献   

6.
This paper evaluates the results of a protein structure prediction contest. The predictions were made using threading procedures, which employ techniques for aligning sequences with 3D structures to select the correct fold of a given sequence from a set of alternatives. Nine different teams submitted 86 predictions, on a total of 21 target proteins with little or no sequence homology to proteins of known structure. The 3D structures of these proteins were newly determined by experimental methods, but not yet published or otherwise available to the predictors. The predictions, made from the amino acid sequence alone, thus represent a genuine test of the current performance of threading methods. Only a subset of all the predictions is evaluated here. It corresponds to the 44 predictions submitted for the 11 target proteins seen to adopt known folds. The predictions for the remaining 10 proteins were not analyzed, although weak similarities with known folds may also exist in these proteins. We find that threading methods are capable of identifying the correct fold in many cases, but not reliably enough as yet. Every team predicts correctly a different set of targets, with virtually all targets predicted correctly by at least one team. Also, common folds such as TIM barrels are recognized more readily than folds with only a few known examples. However, quite surprisingly, the quality of the sequence-structure alignments, corresponding to correctly recognized folds, is generally very poor, as judged by comparison with the corresponding 3D structure alignments. Thus, threading can presently not be relied upon to derive a detailed 3D model from the amino acid sequence. This raises a very intriguing question: how is fold recognition achieved? Our analysis suggests that it may be achieved because threading procedures maximize hydrophobic interactions in the protein core, and are reasonably good at recognizing local secondary structure. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Stephen H. Bryant 《Proteins》1996,26(2):172-185
Threading experiments with proteins from the globin family provide an indication of the nature of the structural similarity required for successful fold recognition and accurate sequence-structure alignment. Threading scores are found to rise above the noise of false positives whenever roughly 60% of residues from a sequence can be aligned with analogous sites in the structure of a remote homolog. Fold recognition specificity thus appears to be limited by the extent of structural similarity, regardless of the degree of sequence similarity. Threading alignment accuracy is found to depend more critically on the degree of structural similarity. Alignments are accurate, placing the majority of residues exactly as in structural alignment, only when superposition residuals are less than 2.5 Å. These criteria for successful recognition and sequence-structure alignment appear to be consistent with the successes and failures of threading methods in blind structure prediction. They also suggest a direct assay for improved threading methods: Potentials and alignment models should be tested for their ability to detect less extensive structural similarities, and to produce accurate alignments when superposition residuals for this conserved “core” fall in the range characteristic of remote homologs. © 1996 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    8.
    EVA (http://cubic.bioc.columbia.edu/eva/) is a web server for evaluation of the accuracy of automated protein structure prediction methods. The evaluation is updated automatically each week, to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently assesses servers for secondary structure prediction, contact prediction, comparative protein structure modelling and threading/fold recognition. Every day, sequences of newly available protein structures in the Protein Data Bank (PDB) are sent to the servers and their predictions are collected. The predictions are then compared to the experimental structures once a week; the results are published on the EVA web pages. Over time, EVA has accumulated prediction results for a large number of proteins, ranging from hundreds to thousands, depending on the prediction method. This large sample assures that methods are compared reliably. As a result, EVA provides useful information to developers as well as users of prediction methods.  相似文献   

    9.
    10.
    MOTIVATION: Protein fold recognition is an important approach to structure discovery without relying on sequence similarity. We study this approach with new multi-class classification methods and examined many issues important for a practical recognition system. RESULTS: Most current discriminative methods for protein fold prediction use the one-against-others method, which has the well-known 'False Positives' problem. We investigated two new methods: the unique one-against-others and the all-against-all methods. Both improve prediction accuracy by 14-110% on a dataset containing 27 SCOP folds. We used the Support Vector Machine (SVM) and the Neural Network (NN) learning methods as base classifiers. SVMs converges fast and leads to high accuracy. When scores of multiple parameter datasets are combined, majority voting reduces noise and increases recognition accuracy. We examined many issues involved with large number of classes, including dependencies of prediction accuracy on the number of folds and on the number of representatives in a fold. Overall, recognition systems achieve 56% fold prediction accuracy on a protein test dataset, where most of the proteins have below 25% sequence identity with the proteins used in training.  相似文献   

    11.
    In the past few years, a new generation of fold recognition methods has been developed, in which the classical sequence information is combined with information obtained from secondary structure and, sometimes, accessibility predictions. The results are promising, indicating that this approach may compete with potential-based methods (Rost B et al., 1997, J Mol Biol 270:471-480). Here we present a systematic study of the different factors contributing to the performance of these methods, in particular when applied to the problem of fold recognition of remote homologues. Our results indicate that secondary structure and accessibility prediction methods have reached an accuracy level where they are not the major factor limiting the accuracy of fold recognition. The pattern degeneracy problem is confirmed as the major source of error of these methods. On the basis of these results, we study three different options to overcome these limitations: normalization schemes, mapping of the coil state into the different zones of the Ramachandran plot, and post-threading graphical analysis.  相似文献   

    12.
    MOTIVATION: The sequence patterns contained in the available motif and hidden Markov model (HMM) databases are a valuable source of information for protein sequence annotation. For structure prediction and fold recognition purposes, we computed mappings from such pattern databases to the protein domain hierarchy given by the ASTRAL compendium and applied them to the prediction of SCOP classifications. Our aim is to make highly confident predictions also for non-trivial cases if possible and abstain from a prediction otherwise, and thus to provide a method that can be used as a first step in a pipeline of prediction methods. We describe two successful examples for such pipelines. With the AutoSCOP approach, it is possible to make predictions in a large-scale manner for many domains of the available sequences in the well-known protein sequence databases. RESULTS: AutoSCOP computes unique sequence patterns and pattern combinations for SCOP classifications. For instance, we assign a SCOP superfamily to a pattern found in its members whenever the pattern does not occur in any other SCOP superfamily. Especially on the fold and superfamily level, our method achieves both high sensitivity (above 93%) and high specificity (above 98%) on the difference set between two ASTRAL versions, due to being able to abstain from unreliable predictions. Further, on a harder test set filtered at low sequence identity, the combination with profile-profile alignments improves accuracy and performs comparably even to structure alignment methods. Integrating our method with structure alignment, we are able to achieve an accuracy of 99% on SCOP fold classifications on this set. In an analysis of false assignments of domains from new folds/superfamilies/families to existing SCOP classifications, AutoSCOP correctly abstains for more than 70% of the domains belonging to new folds and superfamilies, and more than 80% of the domains belonging to new families. These findings show that our approach is a useful additional filter for SCOP classification prediction of protein domains in combination with well-known methods such as profile-profile alignment. AVAILABILITY: A web server where users can input their domain sequences is available at http://www.bio.ifi.lmu.de/autoscop.  相似文献   

    13.
    We present a protein fold recognition method, MANIFOLD, which uses the similarity between target and template proteins in predicted secondary structure, sequence and enzyme code to predict the fold of the target protein. We developed a non-linear ranking scheme in order to combine the scores of the three different similarity measures used. For a difficult test set of proteins with very little sequence similarity, the program predicts the fold class correctly in 34% of cases. This is an over twofold increase in accuracy compared with sequence-based methods such as PSI-BLAST or GenTHREADER, which score 13-14% correct first hits for the same test set. The functional similarity term increases the prediction accuracy by up to 3% compared with using the combination of secondary structure similarity and PSI-BLAST alone. We argue that using functional and secondary structure information can increase the fold recognition beyond sequence similarity.  相似文献   

    14.
    The major aim of tertiary structure prediction is to obtain protein models with the highest possible accuracy. Fold recognition, homology modeling, and de novo prediction methods typically use predicted secondary structures as input, and all of these methods may significantly benefit from more accurate secondary structure predictions. Although there are many different secondary structure prediction methods available in the literature, their cross-validated prediction accuracy is generally <80%. In order to increase the prediction accuracy, we developed a novel hybrid algorithm called Consensus Data Mining (CDM) that combines our two previous successful methods: (1) Fragment Database Mining (FDM), which exploits the Protein Data Bank structures, and (2) GOR V, which is based on information theory, Bayesian statistics, and multiple sequence alignments (MSA). In CDM, the target sequence is dissected into smaller fragments that are compared with fragments obtained from related sequences in the PDB. For fragments with a sequence identity above a certain sequence identity threshold, the FDM method is applied for the prediction. The remainder of the fragments are predicted by GOR V. The results of the CDM are provided as a function of the upper sequence identities of aligned fragments and the sequence identity threshold. We observe that the value 50% is the optimum sequence identity threshold, and that the accuracy of the CDM method measured by Q(3) ranges from 67.5% to 93.2%, depending on the availability of known structural fragments with sufficiently high sequence identity. As the Protein Data Bank grows, it is anticipated that this consensus method will improve because it will rely more upon the structural fragments.  相似文献   

    15.
    Kim D  Xu D  Guo JT  Ellrott K  Xu Y 《Protein engineering》2003,16(9):641-650
    A new method for fold recognition is developed and added to the general protein structure prediction package PROSPECT (http://compbio.ornl.gov/PROSPECT/). The new method (PROSPECT II) has four key features. (i) We have developed an efficient way to utilize the evolutionary information for evaluating the threading potentials including singleton and pairwise energies. (ii) We have developed a two-stage threading strategy: (a) threading using dynamic programming without considering the pairwise energy and (b) fold recognition considering all the energy terms, including the pairwise energy calculated from the dynamic programming threading alignments. (iii) We have developed a combined z-score scheme for fold recognition, which takes into consideration the z-scores of each energy term. (iv) Based on the z-scores, we have developed a confidence index, which measures the reliability of a prediction and a possible structure-function relationship based on a statistical analysis of a large data set consisting of threadings of 600 query proteins against the entire FSSP templates. Tests on several benchmark sets indicate that the evolutionary information and other new features of PROSPECT II greatly improve the alignment accuracy. We also demonstrate that the performance of PROSPECT II on fold recognition is significantly better than any other method available at all levels of similarity. Improvement in the sensitivity of the fold recognition, especially at the superfamily and fold levels, makes PROSPECT II a reliable and fully automated protein structure and function prediction program for genome-scale applications.  相似文献   

    16.
    Analysis of the results of the recent protein structure prediction experiment for our method shows that we achieved a high level of success, Of the 18 available prediction targets of known structure, the assessors have identified 11 chains which either entirely match a previously known fold, or which partially match a substantial region of a known fold. Of these 11 chains, we made predictions for 9, and correctly assigned the folds in 5 cases. We have also identified a further 2 chains which also partially match known folds, and both of these were correctly predicted. The success rate for our method under blind testing is therefore 7 out of 11 chains. A further 2 folds could have easily been recognized but failed due to either overzealous filtering of potential matches, or to simple human error on our part. One of the two targets for which we did not submit a prediction, prosubtilisin, would not have been recognized by our usual criteria, but even in this case, it is possible that a correct prediction could have been made by considerin a combination of pairwise energy and solvation energy Z-scores. Inspection of the threading alignments for the (αβ)8 barrels provides clues as to how fold recognition by threading works, in that these folds are recognized by parts rather than as a whole. The prospects for developing sequence threading technology further is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

    17.
    A computational method for NMR-constrained protein threading.   总被引:2,自引:0,他引:2  
    Protein threading provides an effective method for fold recognition and backbone structure prediction. But its application is currently limited due to its level of prediction accuracy and scope of applicability. One way to significantly improve its usefulness is through the incorporation of underconstrained (or partial) NMR data. It is well known that the NMR method for protein structure determination applies only to small proteins and that its effectiveness decreases rapidly as the protein mass increases beyond about 30 kD. We present, in this paper, a computational framework for applying underconstrained NMR data (that alone are insufficient for structure determination) as constraints in protein threading and also in all-atom model construction. In this study, we consider both secondary structure assignments from chemical shifts and NOE distance restraints. Our results have shown that both secondary structure assignments and a small number of long-range NOEs can significantly improve the threading quality in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from homologs to analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a great amount of structural information, equivalent to that provided by many NMR data; and hence can help reduce the number of NMR data typically required for an accurate structure determination. This new technique can potentially accelerate current NMR structure determination processes and possibly expand NMR's capability to larger proteins.  相似文献   

    18.
    MOTIVATION: Sequences for new proteins are being determined at a rapid rate, as a result of the Human Genome Project, and related genome research. The ability to predict the three-dimensional structure of proteins from sequence alone would be useful in discovering and understanding their function. Threading, or fold recognition, aims to predict the tertiary structure of a protein by aligning its amino acid sequence with a large number of structures, and finding the best fit. This approach depends on obtaining good performance from both the scoring function, which simulates the free energy for given trial alignments, and the threading algorithm, which searches for the lowest-score alignment. It appears that current scoring functions and threading algorithms need improvement. RESULTS: This paper presents a new threading algorithm. Numerical tests demonstrate that it is more powerful than two popular approximate algorithms, and much faster than exact methods.  相似文献   

    19.
    One still cannot predict the 3D fold of a protein from its amino acid sequence, mainly because of errors in the energy estimates underlying the prediction. However, a recently developed theory [1] shows that having a set of homologs (i.e., the chains with equal, in despite of numerous mutations, 3D folds) one can average the potential of each interaction over the homologs and thus predict the common 3D fold of protein family even when a correct fold prediction for an individual sequence is impossible because the energies are known only approximately. This theoretical conclusion has been verified by simulation of the energy spectra of simplified models of protein chains [2], and the further investigation of these simplified models shows that their true "native" fold can be found by folding of the chain where each interaction potential is averaged over the homologs. In conclusion, the applicability of the "homolog-averaging" approach is tested by recognition of real protein 3D structures. Both the gapless threading of sequences onto the known protein folds [3] and the more practically important gapped threading (which allows to consider not only the known 3D structures, but the more or less similar to them folds as well) shows a significant increase in selectivity of the native chain fold recognition.  相似文献   

    20.
    Russell AJ  Torda AE 《Proteins》2002,47(4):496-505
    Multiple sequence alignments are a routine tool in protein fold recognition, but multiple structure alignments are computationally less cooperative. This work describes a method for protein sequence threading and sequence-to-structure alignments that uses multiple aligned structures, the aim being to improve models from protein threading calculations. Sequences are aligned into a field due to corresponding sites in homologous proteins. On the basis of a test set of more than 570 protein pairs, the procedure does improve alignment quality, although no more than averaging over sequences. For the force field tested, the benefit of structure averaging is smaller than that of adding sequence similarity terms or a contribution from secondary structure predictions. Although there is a significant improvement in the quality of sequence-to-structure alignments, this does not directly translate to an immediate improvement in fold recognition capability.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号