首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Escherichia coli has DNA restriction systems which are able to recognize and attack modified cytosine residues in the DNA of incoming bacteriophages and plasmids. The locus for the McrA/RglA system of modified cytosine restriction was located near the pin gene of the defective element, e14. Hence, loss of the e14 element through abortive induction after UV irradiation caused a permanent loss of McrA restriction activity. e14 DNA encoding McrA restriction was cloned and sequenced to reveal a single open reading frame of 831 bp with a predicted gene product of 31 kDa. Clones expressing the complete open reading frame conferred both McrA and RglA phenotypes; however, a deletion derivative was found which complemented RglA restriction against nonglucosylated T6gt phage but did not complement for McrA restriction of methylated plasmid DNA. Possible explanations for this activity and a comparison with the different organization of the McrB/RglB restriction system are discussed.  相似文献   

3.
The mcrB (rglB) locus of Escherichia coli K-12 mediates sequence-specific restriction of cytosine-modified DNA. Genetic and sequence analysis shows that the locus actually comprises two genes, mcrB and mcrC. We show here that in vivo, McrC modifies the specificity of McrB restriction by expanding the range of modified sequences restricted. That is, the sequences sensitive to McrB(+)-dependent restriction can be divided into two sets: some modified sequences containing 5-methylcytosine are restricted by McrB+ cells even when McrC-, but most such sequences are restricted in vivo only by McrB+ McrC+ cells. The sequences restricted only by McrB+C+ include T-even bacteriophage containing 5-hydroxymethylcytosine (restriction of this phage is the RglB+ phenotype), some sequences containing N4-methylcytosine, and some sequences containing 5-methylcytosine. The sequence codes for two polypeptides of 54 (McrB) and 42 (McrC) kilodaltons, whereas in vitro translation yields four products, of approximately 29 and approximately 49 (McrB) and of approximately 38 and approximately 40 (McrC) kilodaltons. The McrB polypeptide sequence contains a potential GTP-binding motif, so this protein presumably binds the nucleotide cofactor. The deduced McrC polypeptide is somewhat basic and may bind to DNA, consistent with its genetic activity as a modulator of the specificity of McrB. At the nucleotide sequence level, the G+C content of mcrBC is very low for E. coli, suggesting that the genes may have been acquired recently during the evolution of the species.  相似文献   

4.
The Mcr systems (previously known as Rgl systems) ofEscherichia coli recognize and cleave specific sequences carrying methylated or hydroxymethylated cytosines. We have cloned the mcrA gene and determined its nucleotide sequence. An 831 base pair sequence encodes the McrA protein. Analysis of the sequence data reveals that there arc additional ORFs internal to the above. A phage T7 expression system was used to determine the protein products encoded by the cloned mcrA gene. The results clearly show that a 31 kDa polypeptide is responsible for McrA activity. This is in agreement with the molecular weight deduced from sequence data. McrA protein was found to be localized in the outer membrane ofEscherichia coli. To our knowledge this is the first restriction enzyme localized in the outer membraneof Escherichia coli. Presented in part at the Second New England Biolabs Workshop on Biological DNA Modification, September, 1990, Berlin  相似文献   

5.
The geneshsdM andhsdS for M.EcoKI modification methyltrasferase and the complete set ofhsdR,hsdM andhsdS genes coding for R.EcoKI restriction endonuclease, both with and without a temperature-sensitive (ts) mutation inhsdS gene, were cloned in pBR322 plasmid and introduced intoE. coli C (a strain without a natural restriction-modification (R-M) system). The strains producing only the methyltransferase, or together with the endonuclease, were thus obtained. ThehsdS ts-1 mutation, mapped previously in the distal variable region of thehsdS gene with C1 245-T transition has no effect on the R-M phenotype expressed from cloned genes in bacteria grown at 42°C. In clones transformed with the wholehsd region an alleviation of R-M functions was observed immediately after the transformation, but after subculture the transformants expressed the wild-type R-M phenotype irrespective of whether the wild-type or the mutanthsdS allele was present in the hybrid plasmid. Simultaneous overproduction of HsdS and HsdM subunits impairs the ts effect of thehsdS ts-1 mutation on restriction and modification.  相似文献   

6.
Type I restriction enzymes comprise three subunits encoded by genes designated hsdR, hsdM, and hsdS; S confers sequence specificity. Three families of enzymes are known and within families, but not between, hsdM and hsdR are conserved. Consequently, interfamily comparisons of M and R sequences focus on regions of putative functional significance, while both inter- and intrafamily comparisons address the origin, nature and role of diversity of type I restriction systems. We have determined the sequence of the hsdR gene for EcoA, thus making available sequences of all three hsd genes of one representative from each family. The predicted R polypeptide sequences share conserved regions with one superfamily of putative helicases, so-called ‘DEAD box’ proteins; these conserved sequences may be associated with the ATP-dependent translocation of DNA that precedes restriction. We also present hsdM and hsdR sequences for EcoE, a member of the same family as EcoA. The sequences of the M and R genes of EcoA and EcoE are at least as divergent as typical genes from Escherichia coli and Salmonella, perhaps as the result of selection favouring diversity of restriction specificities combined with lateral transfer among different species.  相似文献   

7.
The McrBC restriction system has the ability to restrict DNA containing 5-hydroxymethylcytosine, N4-methylcytosine, and 5-methylcytosine at specific sequences. The mcrB gene produces two gene products. The complete mcrB open reading frame produces a 51-kDa protein (McrB(L)) and a 33-kDa protein (McrB(S)). The smaller McrB polypeptide is produced from an in-frame, internal translational start site in the mcrB gene. The McrB(S) sequence is identical to that of McrB(L) except that it lacks 161 amino acids present at the N-terminal end of the latter protein. It has been suggested that McrB(L) is the DNA binding restriction subunit. The function of McrB(S) is unknown, although there has been speculation that it plays some role in the modulation of McrBC restriction. Studies of the function of McrB(S) have been challenging since it is produced in frame with McrB(L). In this study, we tested the effects of underproduction (via antisense RNA) and overproduction (via gene dosage) of mcrBC gene products on restriction levels of the mcrBC+ strain JM107. Among the parameters monitored was the induction of SOS responses, which indicate of DNA damage. Evidence from this study suggests that McrB(S) is necessary for stabilization of the McrBC restriction complex in vivo.  相似文献   

8.
Summary The DNA polymerase induced by bacteriophage T7 is composed of a phage-specified subunit, the gene 5 protein, and a host-specified subunit, the 12,000 dalton thioredoxin of Escherichia coli. tsnC mutants of E. coli B (Chamberlin, 1974) have no detectable thioredoxin, and thus cannot support the growth of phage T7, although they are killed by phage infection. A mutant of E. coli K12 affecting thioredoxin has been isolated by a modification of the procedure used by Chamberlin (1974) to isolate tsnC mutants of E. coli B. The gene affecting thioredoxin has been designated trxA. This mutant, E. coli JM109, shows the TsnC phenotype in that it is killed by, but cannot support the growth of, bacteriophage T7. T7 DNA replication does not occur in mutantinfected cells. These phenotypic expressions of the tsnC mutation have enabled us to screen recombinants for the trxA allele in HfrxF- crosses and F-ductants in episome transfer experiments. Extracts of transductants in generalized transduction by P1 phage were screened for their ability to complement partially purified phage T7 gene 5 protein to form T7 DNA polymerase. The trxA gene is located at 84 min on the E. coli linkage map, between uvrE and metE; trxA is 34% co-transducible with metE.  相似文献   

9.
Abstract

A genomic library of Ruminococcus fl avef aciens FD‐1 DNA was constructed using the Escherichia coli bacteriophage λ vector λDASH. A recombinant phage exhibiting activity against both Ostazin brilliant red‐hydroxyethyl cellulose (OBR‐HEC) and carboxymethyl cellulose (CMC) was isolated. This clone (designated FD1‐1) was further analyzed by restriction endonuclease mapping and Southern blot analysis. Substrate specificity data shows that the cloned gene(s) encodes both endoglucanase activity and endoxylanase activity. CMC and xylan zymograms of protein(s) produced by this clone and then separated by non‐denaturing PAGE suggest that the endoglucanase/endoxylanase activities reside on the same polypeptide or protein complex. An additional xylanase product lacking CMCase activity was also detected.  相似文献   

10.
11.
E. A. Raleigh  R. Trimarchi    H. Revel 《Genetics》1989,122(2):279-296
We have genetically analyzed, cloned and physically mapped the modified cytosine-specific restriction determinants mcrA (rglA) and mcrB (rglB) of Escherichia coli K-12. The independently discovered Rgl and Mcr restriction systems are shown to be identical by three criteria: 1) mutants with the RglA- or RglB- phenotypes display the corresponding McrA- or McrB- phenotypes, and vice versa; 2) the gene(s) for RglA and McrA reside together at one locus, while gene(s) for RglB and McrB are coincident at a different locus; and 3) RglA+ and RglB+ recombinant clones complement for the corresponding Mcr-deficient lesions. The mcrA (rglA) gene(s) is on the excisable element e14, just clockwise of purB at 25 min. The mcrB (rglB) gene(s), at 99 min, is in a cluster of restriction functions that includes hsd and mrr, determinants of host-specific restriction (EcoK) and methyladenine-specific restriction respectively. Gene order is mcrB-hsdS-hsdM-hsdR-mrr-serB. Possible models for the acqusition of these restriction determinants by enteric bacteria are discussed.  相似文献   

12.
TherglB gene ofEscherichia coli codes for a restriction activity that cleaves the hydroxymethylated DNA of T2 and T4 phages. Earlier mapping data placed the gene at 98.39 min counterclockwise to thehsd operon. Genetic analysis of the in vivo gene fusions with fusion-transducing phages established the location of therglB gene next to thehsdS gene of thehsdRMS cluster. The methodology used in this study could be extended to similar in vivo physical mapping of closely linked genes.  相似文献   

13.
The McrB restriction system of Escherichia coli K-12 is responsible for the biological inactivation of foreign DNA that contains 5-methylcytosine residues (E. A. Raleigh and G. Wilson, Proc. Natl. Acad. Sci. USA 83:9070-9074, 1986). Within the McrB region of the chromosome is the mcrB gene, which encodes a protein of 51 kilodaltons (kDa) (T. K. Ross, E. C. Achberger, and H. D. Braymer, Gene 61:277-289, 1987), and the mcrC gene, the product of which is 39 kDa (T. K. Ross, E. C. Achberger, and H. D. Braymer, Mol. Gen. Genet., in press). The nucleotide sequence of a 2,695-base-pair segment encompassing the McrB region was determined. The deduced amino acid sequence was used to identify two open reading frames specifying peptides of 455 and 348 amino acids, corresponding to the products of the mcrB and mcrC genes, respectively. A single-nucleotide overlap was found to exist between the termination codon of the mcrB gene and the proposed initiation codon of the mcrC gene. The presence of an additional peptide of 33 kDa in strains containing various recombinant plasmids with portions of the McrB region has been reported by Ross et al. (Gene 61:277-289, 1987). The analysis of frameshift and deletion mutants of one such hybrid plasmid, pRAB-13, provided evidence for a second translational initiation site within the McrB open reading frame. The proposed start codon for translation of the 33-kDa peptide lies 481 nucleotides downstream from the initiation codon for the 51-kDa mcrB gene product. The 33-kDa peptide may play a regulatory role in the McrB restriction of DNA containing 5-methylcytosine.  相似文献   

14.
Methylated and hydroxymethylated cytosine containing DNA was restricted by proteins encoded by themcrBC (rglB) loci ofE. coli. In vivo, RglB proteins recognize and cleave hmCT2 and hmCT4 DNAs at 30°C and 42°C but hmCT6 DNA was unaffected at both temperatures, However, cells carrying therglB genes cloned on pBR322 (pDSS17) did not restrict hmCT6 at 30°C, but hmCT6 DNA was cleaved efficiently at 42°C. Heat shock treatment for five minutes was enough to induce this promiscuity in recognition specificity. We call this activity RglB star. A single copy ofrglB located on the chromosome or cloned on a low copy vector pMU575 failed to show RglB star activity.De novo protein synthesis was not required for the manifestation of RglB star activity.  相似文献   

15.
Restriction of glucosyl-free HMC-DNA mediated by RglB is alleviated inrecBC sbcA strains ofEscherichia coli K12. Mutation in the unlinkedrra gene reverses thisrecBC sbcA-mediated alleviation. The map position ofrra is 90.16 min on the standard map, and therra + gene product counteracts Rgl restriction. The activation of therra gene is controlled by thesbcA gene, and this regulation does not seem to require the involvement of other gene functions.  相似文献   

16.
Summary SPO1 DNA contains only 5 cleavage sites for restriction enzymes which recognize and cleave the sequence 5-G-G-C-C (HaeIII or BsuR). Fragments of SPO1 DNA cloned in E. coli to substitute 5-hydroxymethyluracil (HMU) by thymine (T) remain resistant to HaeIII indicating that this unexpectedly small number of cleavages by HaeIII is not correlated with the presence of HMU in the normal phage DNA. It was previously shown that SPO1 is neither subject to B. subtilis R restriction (Trautner et al., 1974) nor modification in vivo (Günthert et al., 1975). We now show that SPO1 DNA can however be restricted and modified in vitro.  相似文献   

17.
Summary A library containing more than 80% of the Vibrio cholerae genome was constructed by cloning BamH1 restriction fragments into pBR322. Using interspecific complementation of an Escherichia coli recA mutant with plasmids containing the gene bank of V. cholerae, a recA-like gene was identified. The recombinant plasmid, designated as pDP145, contained a 1.45 kb segment of V. cholerae DNA which codes for a protein of molecular weight 39,000. The product of this gene confers methyl methane sulphonate resistance on the E. coli recA mutant, suppresses its ultraviolet (UV) light sensitive phenotype and has proteolytic activity on the phage repressor. Induction of a 39,000 dalton protein in UV-irradiated V. cholerae cells was demonstrated.  相似文献   

18.
Type I restriction enzymes comprise three subunits only one of which, the S polypeptide, dictates the specificity of the DNA sequence recognized. Recombination between two different hsdS genes, SP and SB, led to the isolation of a system, SQ, which had a different specificity from that of either parent. The finding that the nucleotide sequence recognized by SQ is a hybrid containing components from both the SP and SB target sequences suggested that DNA recognition is carried out by two separable domains within each specificity polypeptide. To test this we have made the recombinant gene of reciprocal structure and demonstrate that it encodes a polypeptide whose recognition sequence, deduced In vivo, is as predicted by this model. We also report the sequence of the SB specificity gene, so that information is now available for the five known members of this family of enzymes. Ali show a similar organization of conserved and variable regions. Comparisons of the predicted amino acid sequences reveal large non-conserved areas which may not even be structurally similar. This is remarkable since these different S subunits are functionally identical, except for the specificity with respect to the DNA sequence with which they interact. We discuss the correlation of the variation in polypeptide sequence with recognition specificities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号