首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here that cells present in embryonic chick retinal monolayer cultures express differentiated properties characteristic of chick cones developing in vivo. Cell suspensions from 8-d chick embryo retina (a stage when photoreceptor differentiation has not yet started) were cultured for up to 7 d in low density, glial-free monolayers. Under these conditions, monopolar cells represent approximately 40% of the total number of process-bearing neurons. After 6 d in vitro, most of these monopolar cells showed morphological features reminiscent of developing chick cones. These features could be detected with phase-contrast microscopy, lectin cytochemistry, and transmission and scanning electron microscopy. Characteristic cone traits expressed by cultured monopolar cells included the following: (a) a highly polarized organization; (b) a single, short, usually unbranched neurite; (c) the polarized position of the nucleus close to the origin of the neurite; (d) characteristic cone inner segment features such as abundant free ribosomes, a polarized Golgi apparatus, a cluster of mitochondria distal to the nucleus, a big, membrane-bound, pigment-containing vacuole reminiscent of the "lipid droplet" characteristic of chick cones, and at least in some cases, a well-developed paraboloid; (e) the presence of a complex of apical differentiations including abundant microvilli and in some cases also a cilium-like process; and (f) the staining of the apical region of the cell with peanut lectin, which has been shown to be selective for chick embryo cones (Blanks, J.C., and L.V. Johnson, 1983, J. Comp. Neurol., 221:31-41; and Blanks, J.C., and L.V. Johnson, 1984, Invest. Ophthalmol. Visual Sci., 25:546-557). This pattern of differentiation achieved by 8-d chick retina cells after 6 d in vitro is similar to that shown by 14-d-old chick embryo cones in vivo. Outer segments are not present at this stage of development either in vivo or in vitro. This experimental system is now being used to search for cellular and molecular signals controlling survival and differentiation of cone cells.  相似文献   

2.
Cortisol induces glutamine synthetase (GS) in gliocytes of chick embryo neural retina. Using adherent cultures of retina cells we have demonstrated that responsiveness of the gliocytes to GS induction by the hormone requires contact with neurons. GS is not inducible in high-density cultures depleted of neurons and consisting only of gliocytes. In neuron-containing cultures, induced GS was detected immunohistochemically only in those gliocytes that were closely juxtaposed with clusters of neurons. Unlike the induction of GS, the expression of carbonic anhydrase-C (which does not require cortisol) persisted in these glia cells also in the absence of neurons. The nature and role of glia-neuron interactions in the hormonal induction of GS are briefly discussed.  相似文献   

3.
In primary monolayer cultures of dispersed neural retina cells from 13-day chick embryo, gliocytes (Müller glia cells) multiply and rapidly change into a lentoidal (lens-like) phenotype. They express lens proteins, including MP26 (a lens plasma-membrane antigen) and ultra-structurally appear to resemble lens cells. A significant aspect of this modification is that the glia-derived lentoidal cells no longer display contact-affinity for neurons but become preferentially adhesive to each other; in aggregates, they assemble into compact lentoids. A likely explanation for this change in cell affinities is that the modified gliocytes express little or no R-cognin, a retinal cell-surface antigen implicated in mutual recognition and adhesion of retina cells. Although lentoidal cells express MP26, a gap-junction component in the lens, no gap junctions could be found in the lentoids.  相似文献   

4.
The retina cell-aggregating glycoprotein, referred to as the retina cognin, has been demonstrated to be located at the surface of embryonic neural retina cells. The term cognin is used to indicate its postulated role in the mechanism of mutual recognition and morphogenetic association of embryonic cells. Antiserum was prepared to the highly purified retina cognin derived from isolated cell membranes of chick embryo retina, and it was used to detect the cognin on cells from chick embryos by means of complement-mediated cell lysis. Retina cells (from 10-day embryos) freshly dissociated with trypsin showed little—if any—lysis by the cognin antiserum; this is consistent with the sensitivity of the cognin to trypsin. However, the cells became susceptible to immunolysis after a period of incubation at 37 °C, which indicates regeneration of the cognin at the cell surface during the recovery period. This regeneration required protein synthesis. Immunofluorescence tests showed binding of the antiserum to the surface of the recovered cells, thereby further demonstrating the surface location of the cognin. The presence, availability or ability to regenerate the cognin, as assayed here, declined sharply with the embryonic age of the cells. Addition of exogenous cognin to freshly trypsin-dissociated retina cells (from 10-day embryos) markedly increased their susceptibility to immunolysis by the cognin antiserum, which indicates that the added cognin becomes associated with the surface of these cells. In contrast, addition of retina cognin to cells freshly trypsinized from 10-day embryo optic tectum and cerebrum, or from 14-day retina did not increase their susceptibility to immunolysis by the cognin antiserum. These results are consistent with earlier findings that enhancement of cell aggregation by the retina cognin is tissue-specific and stage-specific. Cells from non-neural tissues of the chick embryo were not lysed by the retina cognin antiserum. However, neural tissues, such as optic tectum, were found to contain cells which showed surface cross-reaction with the retina cognin antiserum.  相似文献   

5.
Studies were carried out in dissociated cell cultures on the nerve growth factor (NGF) requirement of chick embryo dorsal root ganglionic (DRG) neurons. Findings were: (i) The minimum level of 2.5 S NGF required to sustain the survival of maximal numbers of process-bearing cells derived from 8-day (E8) embryonic DRGs is 0.5 ng/ml (~2 × 10?11M). (ii) Cultures derived from chick embryos of increasing ages (E8 to E18) showed a progressive increase in the proportion of process-bearing cells which survived in the absence of NGF. While few process-bearing cells survived in cultures of E8 ganglia in the absence of NGF, survival of neurons in cultures derived from E17 and E18 ganglia was not affected by the absence of the factor. Comparable results were obtained with cultures in which the number of non-neuronal cells was greatly reduced. (iii) Neurons derived from E8 ganglia lost their NGF requirement in culture at a conceptual age similar to that which they appear to do so in vivo. These results are discussed with respect to the role of NGF in development of sensory neurons.  相似文献   

6.
Previous data suggest that nucleotides are important mitogens in the developing retina. Here, the effect of ATP on the death of cultured chick embryo retina cells was investigated. In cultures obtained from retinas of 7-day-old chick embryos (E7) that were cultivated for 2 days (E7C2), both ATP and BzATP induced a ~30 % decrease in cell viability that was time- and dose-dependent and that could be blocked by 0.2 mM oxidized ATP or 0.3 μM KN-62. An increase in cleaved caspase-3 levels and in the number of TUNEL-positive cells was observed when cultures were incubated with 3 mM ATP and immunolabeling for cleaved-caspase 3 was observed over neurons but not over glial cells. ATP-dependent cell death was developmentally regulated, the maximal levels being detected by E7C2-3. Nucleotides were able to increase neuronal ethidium bromide and sulforhodamine B uptake in mixed and purified neuronal cultures, an effect that was blocked by the antagonists Brilliant Blue G and oxidized ATP. In contrast, nucleotide-induced cell death was observed only in mixed cultures, but not in purified cultures of neurons or glia. ATP-induced neuronal death was blocked by the glutamatergic antagonists MK801 and DNQX and activation of P2X7 receptors by ATP decreased the uptake of [3H]-d-aspartate by cultured glial cells with a concomitant accumulation of it in the extracellular medium. These results suggest that ATP induces apoptosis of chick embryo retinal neurons in culture through activation of P2X7 and glutamate ionotropic receptors. Involvement of a P2X7 receptor-mediated inhibition of the glial uptake of glutamate is suggested.  相似文献   

7.
Enrichment of spinal cord cell cultures with motoneurons   总被引:9,自引:2,他引:7  
Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221-283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation.  相似文献   

8.
Summary The differentiation of cells and synapses in explants of 9-day-old chick embryo retina has been studied by light and electron microscopy over a period of 35 days in vitro, and samples of retina from the 9-day chick foetus were directly fixed and prepared for study.At the time of explantation the retinae were poorly differentiated and no lamination was apparent. From day 14 onwards, (i) outer and inner nuclear layers (ONL, INL) separated by a layer of neuropil corresponding to the outer plexiform layer (OPL) and (ii) a layer of scattered large ganglion cells separated from the INL by a zone of neuropil resembling the inner plexiform layer (IPL) were apparent, and (iii) a well-differentiated outer limiting membrane was established close to the surface of the explants. In the oldest cultures some development of photoreceptor outer segments occurred but a distinct optic nerve fibre layer did not form.Although cell identification presented problems even in the oldest cultures, the major retinal cell types described in vivo could be identified. Photoreceptor cells developed pedicles in the OPL which became filled with synaptic vesicles and synaptic ribbons and established ribbon synapses (including triads) with and were commonly invaginated by processes from horizontal and bipolar cells. Processes of bipolar cells in the IPL formed simple and dyad synapses. At least two types of presynaptic amacrine cells were also identified in the INL, one of which contained large numbers of dense-core vesicles. The ganglion cells, though sparse, were large and well differentiated.These findings show that all the major neuronal types of the retina are capable of developing and differentiating in vitro, lagging behind the time-table of development and differentiation in vivo by approximately 7 days, but resulting in a histotypically organised retina with synaptic neuropil showing many similarities to the corresponding neuropil in vivo.  相似文献   

9.
Messenger RNA has been isolated from day-old chick lens. Size characterization and heterologous cell-free translation demonstrate that the predominant species of mRNA present code for α-, β- and δ-crystallins. Total polysomal RNA and polysomal RNA which did not bind to oligo (dT)-cellulose translate in the cell-free system to give a crystallin profile qualitatively similar to that of poly(A)+ mRNA. RNA from postribosomal supernatant which binds to oligo(dT)-cellulose also translates to give crystallins, but the products are enriched for β-crystallins. Messenger RNAs isolated from 15-day embryo lens fiber and lens epithelium cells give products on translation which reflect the different protein compositions of these two cell types, as do mRNAs isolated from chick lenses at various developmental stages. Messenger RNAs were isolated from freshly excised 8-day embryo neural retina and from this tissue undergoing transdifferentiation into lens cells in cell culture. Cell-free translation demonstrates no detectable crystallin mRNAs in the freshly excised material, but by 42 days in cell culture, crystallin mRNAs are the most prominent species.  相似文献   

10.
It is not known whether the differentiated fate of retinal precursor cells is determined before, during, or after terminal mitosis. Previous studies from this laboratory led to the hypothesis that retinal precursor cells remain plastic after final mitosis and will follow a photoreceptor "default pathway" unless induced to develop as neurons by intraretinal factors. This hypothesis predicts that isolated precursors undergoing terminal mitosis and differentiation in cell culture, in the absence of the retinal microenvironment, should become photoreceptors, regardless of embryonic age. To test this prediction precursor cells were dissociated from 5- to 8-day chick embryo retinas and grown as single cells in vitro. Bromodeoxyuridine (BRDU)- and [3H]thymidine-labeling techniques, coupled with serial photography of precursor development in culture, showed that at all donor ages some of the isolated cells divided one or more times and became postmitotic in vitro. Analysis of cell phenotype by phase-contrast microscopy, sequential photography, autoradiography, and immunocytochemistry showed that the majority of precursors from all donor ages differentiated as photoreceptors. These observations support a prediction derived from the "photoreceptor default" hypothesis.  相似文献   

11.
A rapid increase in the synthesis and accumulation of the enzyme glutamine synthetase (GS) in the neural retina of the chick embryo characterizes the functional differentiation and maturation of this tissue. A precocious increase of GS can be induced in the embryonic retina by hydrocortisone and related corticosteroids. This paper presents evidence that the responsiveness of neural retina cells to GS induction by the hormonal inducer is dependent on histotypic associations and organization. This was demonstrated, using retina from embryos of different ages, by comparing GS induction in cultures of intact retina tissue with that in aggregates of retina cells and in monolayer cultures of retina cells.  相似文献   

12.
Glycerol Phosphate Dehydrogenase in Developing Chick Retina and Brain   总被引:1,自引:1,他引:0  
Abstract: The development of cytoplasmic glycerol phosphate dehydrogenase (GPDH) activity in chick neural retina is compared with that in brain. GPDH converts dihydroxyacetone phosphate to glycerol 3-phosphate, an intermediate in phospholipid synthesis. The enzyme is known to be under corticosteroid control in rat brain and spinal cord (but not muscle or liver) and in primary oligodendrocyte cultures. It has not been previously studied in the eye. In chick brain the GDPH specific activity rises fivefold from the early embryo to the adult, with nearly all the increase occurring between embryonic day 14 and hatching. This time course correlates well with the known maturation of chick adrenal cortex (which produces corticosteroids). On the other hand, in chick retina the GPDH specific activity remains at a low basal level throughout development. Furthermore, adult rat and beef retinas show much lower enzyme activity than do the corresponding brain tissues. GPDH can be induced precociously by hydrocortisone in embryonic chick brain from days 12 through 16, both in the intact embryo and in tissue culture; however, GPDH is not at all inducible in chick retina. The developmental increase in chick brain GPDH can be correlated qualitatively with myelin formation, as shown by luxol fast blue staining, whereas no myelin is seen in retina at any age. Our results are consistent with recent immunocytochemical studies demonstrating that GPDH in rat brain is associated with myelin-producing oligodendroglial cells, absent in retina. In comparison, another glial enzyme, glutamine synthetase (GS), known to be inducible in both chick brain and retina, is localized in brain astrocytes and retinal Müller cells.  相似文献   

13.
Summary To elucidate the cell-type origin of lens cells, which differentiate in stationary cultures of neural retina, chimeric cultures between chick and quail cells were made to recombine xenoplastically the different cell fractions separated from 8- to 9-day cultures of 3.5-day-old embryonic neural retinal cells by means of centrifugation in Percoll. Extensive lentoidogenesis occurred in the recombination of the N2-fraction (consisting mostly of small round cells) with the E-fraction (containing a number of flattened epithelial cells). Taking advantage of the difference in electrophoretic mobility of chick and quail -crystallin, it was shown that this lens-specific protein, synthesized in the chimeric cultures, was mostly of the species-specificity of N2. Microscopic observations of histological sections of cell sheets of quail N2- and chick E-fraction chimeric cultures revealed that most cells with -crystallin, as identified by means of immunohistological detection, are provided with a nuclear marker characteristic of quail. By determining the level of activity of choline acetyltransferase and by examining the stainability with a fluorescent dye (Merocyanine-540), it was suggested that cells in the N2-fraction are primitive neuroblast-like cells. Thus, we can conclude that putative neuronal cells in early cultures of avian embryonic neural retina can transdifferentiate into lens cells.  相似文献   

14.
The water extracts from the retina and brain of 7-8-day old chick embryos were centrifuged at 20,000 g; sediments were discarded and supernatants were additionally centrifuged at 110,000 g. The inductive activity of supernatants (20,000 and 110,000 g) and sediments (110,000 g) was estimated in vitro on the Rana temporaria early gastrula ectoderm. The neutralizing activity was related exclusively to the soluble fractions of the extracts from the chick embryo retina and brain. The lens-inducing activity appeared to be characteristic of both the supernatants and the microsome fractions of these extracts. A comparative biochemical analysis of the extracts (isoelectrofocusing, electrophoresis in the presence of sodium dodecylsulfate, electroblotting) has shown that the chick embryo retina and brain are similar by the spectrum and properties of peptides. It is suggested that the similarity of the extracts inducing effect on the early gastrula ectoderm is due to the presence of the same proteins (peptides) in the retina and brain. Peptides with a positive immunohistochemical reaction to vimentin and peptides of neurofilaments were found in trace quantities in the retina and brain extracts by means of immunoelectroblotting.  相似文献   

15.
Light and electron microscopy were used to study Landolt's club of the bipolar cells in the newborn chick retina as well as in early embryonic stages. In the embryo, the bipolar cells were connected to the outer limiting membrane by Landolt's club. Some of the bipolar cells disconnect from this membrane, by complete retraction of Landolt's club, giving rise to bipolar cells without this process. The newly hatched chick, was used for analysis of the ultrastructure of Landolt's club. Zones of apposition between Muller cells and Landolt's club are associated with cytoplasmic vesicles in both cells. Muller cells appear to transmit vesicular material, possibly nutrients, to bipolar cells through Landolt's club. Thus, Landolt's club provides substrates to bipolar cells in the poorly vascularized region of the chick retina.  相似文献   

16.
Purification of the Chick Eye Ciliary Neuronotrophic Factor   总被引:26,自引:11,他引:26  
Dissociated 8-day chick embryo ciliary ganglionic neurons will not survive for even 24 h in culture without the addition of specific supplements. One such supplement is a protein termed the ciliary neuronotrophic factor (CNTF) which is present at very high concentrations within intraocular tissues that contain the same muscle cells innervated by ciliary ganglionic neurons in vivo. We describe here the purification of chick eye CNTF by a 2 1/2-day procedure involving the processing of intraocular tissue extract sequentially through DE52 ion-exchange chromatography, membrane ultrafiltration-concentration, sucrose density gradient ultracentrifugation, and preparative sodium dodecyl sulfate-polyacrylamide gradient electrophoresis. An aqueous extract of the tissue from 300 eyes will yield about 10-20 micrograms of biologically active, electrophoretically pure CNTF with a specific activity of 7.5 X 10(6) trophic units/mg protein. Purified CNTF has an Mr of 20,400 daltons and an isoelectric point of about 5, as determined by analytical gel electrophoresis. In addition to supporting the survival of ciliary ganglion neurons, purified CNTF also supports the 24-h survival of cultured neurons from certain chick and rodent sensory and sympathetic ganglia. CNTF differs from mouse submaxillary nerve growth factor (NGF) in molecular weight, isoelectric point, inability to be inactivated by antibodies to NGF, ability to support the in vitro survival of the ciliary ganglion neurons, and inability to support that of 8-day chick embryo dorsal root ganglionic neurons. Thus, CNTF represents the first purified neuronotrophic factor which addresses parasympathetic cholinergic neurons.  相似文献   

17.
18.
During development, ciliary ganglionic neurons become postmitotic and extend neurites in apparent independence of the presence of their future intraocular innervation targets. After reaching their peripheral innervation territory, however, these neurons become target dependent and about half of them die. We have previously reported that chick embryo intraocular target tissues contain a ciliary neuronotrophic factor (CNTF), which can be extracted and partially purified in a soluble form and which ensures near-total survival of 8-day chick embryo ciliary ganglionic neurons in monolayer cultures. In this study we have dissociated and cultured ciliary ganglia from embryonic Day (ED) 5 through 14, and examined dependence and responsiveness of their neurons to exogenously added CNTF. Two cell classes (dark and bright) could be distinguished by phase microscopy and differentially counted in cell dissociates from ED7–14, but not in ED5–6 ones. Dark cell number per ganglion increased from 6000 to 78,000 over this developmental time period. In contrast, bright cells (putative neurons) declined from a maximum of about 10,000 to 6000, suggesting a correlation with the expected neuronal cell death in vivo. Dissociated cells from ED5–14 ganglia were seeded on a polyornithine substratum coated with neurite promoting factor, cultured for 24 hr with or without added CNTF, and numerically examined for survival and neuritic development. Cultures from ED7–14 ganglia showed two cell categories: (i) flat nonneuronal elements dramatically increased in number with ganglionic age (thereby correlating with the increasing number of dark cells in the dissociates) and (ii) large, bright cells (often displaying neurite outgrowth) decreased in number in parallel with bright cell number in the dissociate. The survival of these neuronal elements was strictly dependent on exogenously added CNTF between ED7 and 10, but became progressively independent with older ages. ED14 neurons (fully capable of surviving for 24 hr without added CNTF) continued to require CNTF for neurite extension, thus displaying retained sensitivity to this factor. Although the ED5–6 cultures contained well-recognizable flat cells, the dominant category comprised cells with variable morphology, practically all of which exhibited neurite-like processes. Both the survival and neurite extension of these cells, which we tentatively interpret as immature neurons were independent of the presence of added CNTF.  相似文献   

19.
Through mechanisms still unknown, the apparently homogeneous neuroepithelium of the embryonic optic cup differentiates into such divergent cell types as photoreceptors, glia, and various subsets of neurons. Questions that still remain unanswered in this field include the timing and mechanism of action of the "instructive" events directing each neuroepithelial cell to undergo the sequence of phenotypic changes necessary to develop into a specific retinal cell type. This laboratory is investigating some of these questions using cultures in which dissociated neural retina cells, obtained before the onset of overt photoreceptor differentiation, develop at low density in the absence of glia and pigment epithelium. The cultures initially are a morphologically homogeneous population of process-free, round cells. Some cells retain this morphology throughout the first week in vitro, while others develop either as photoreceptors or as multipolar neurons. Photoreceptors elongate and become very asymmetric as they do in vivo, with characteristic compartments orderly arranged along their longitudinal axis (an outer segment-like process, inner segment, cell body, and a characteristically short, single neurite). Cell polarization can also be observed in the distribution of opsin immunoreactive materials and some cytoskeletal elements. Thus, certain precursor cells present in the embryonic retina seem to be programmed to differentiate into photoreceptors even when developing in the absence of contacts with other retinal cells. However, interactions with other constituents of the retina/pigment epithelium complex are probably necessary to ensure final photoreceptor maturation, including further growth of the opsin-rich outer segment process.  相似文献   

20.
The effects of three different culture media (Eagle's MEM, F-12 and L-15) on the transdifferentiation of 8-day chick embryonic neural retina into lens cells, were examined with respect to the expression of two phenotypes. One type referred to neuronal specificity (as represented by the level of cholineacetyl-transferase, CAT, activity) and the other to lens specificity (as represented by content of α-and δ-crystallin). In 7-day cell cultures before the visible differentiation of lentoid bodies, CAT activity was detected in all media. But, its level was about 9 times higher in cultures with L-15 than in those with MEM and 3 times higher than in F-12. In 26-day cultures, CAT activity was practically undetectable. The production of α-and δ-crystallin was detected in cultures at 26 days. There were quantitative differences in the crystallin content with different media, and it was highest in cultures with L-15. The results indicate that conditions most favourable to the maintenance of the neuronal specificity in cell cultures of neural retina, can also support the most extensive transdifferentiation. The possibility of direct transdifferentiation of once neuronally specified cells into lens cells in cultures with L-15 has been suggested to explain the present results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号