首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raw starch is the most abundant source of glucose in the world. Therefore, finding enzymes capable of digesting raw starch would find high industrial demand. The α-amylase gene of Bacillus amyloliquefaciens ATCC 23842 was amplified, cloned and overexpressed in Escherichia coli BL21 (DE3) cells. The recombinant enzyme was purified to apparent homogeneity using ion exchange and gel filtration chromatography. The raw-starch digestibility of the purified enzyme was characterized by studying the hydrolysis and adsorption rate on a variety of raw starches (potato, cassava, corn, wheat and rice). The raw-starch digestion was further confirmed by scanning electron microscopy studies, which revealed an effective rate of hydrolysis. The kinetic studies revealed a relatively low K m of 2.76 mg/mL, exhibiting high affinity towards the soluble starch as the most preferred substrate and the inhibition kinetic studies revealed a high K i value (350 mM).  相似文献   

2.
Neotermes koshunensis is a lower termite that secretes endogenous β-glucosidase in the salivary glands. This β-glucosidase (G1NkBG) was successfully expressed in Aspergillus oryzae. G1NkBG was purified to homogeneity from the culture supernatant through ammonium sulfate precipitation and anion exchange, hydrophobic, and gel filtration chromatographies with a 48-fold increase in purity. The molecular mass of the native enzyme appeared as a single band at 60 kDa after gel filtration analysis, indicating that G1NkBG is a monomeric protein. Maximum activity was observed at 50 °C with an optimum pH at 5.0. G1NkBG retained 80% of its maximum activity at temperatures up to 45 °C and lost its activity at temperatures above 55 °C. The enzyme was stable from pH 5.0 to 9.0. G1NkBG was most active towards laminaribiose and p-nitrophenyl-β-d-fucopyranoside. Cellobiose, as well as cello-oligosaccharides, was also well hydrolyzed. The enzyme activity was slightly stimulated by Mn2+ and glycerol. The K m and V max values were 0.77 mM and 16 U/mg, respectively, against p-nitrophenyl-β-d-glucopyranoside. An unusual finding was that G1NkBG was stimulated by 1.3-fold when glucose was present in the reaction mixture at a concentration of 200 mM. These characteristics, particularly the stimulation of enzyme activity by glucose, make G1NkBG of great interest for biotechnological applications, especially for bioethanol production.  相似文献   

3.
The cell wall of Candida albicans is composed of mannoproteins associated to glycan polymers. Most of these proteins are retained in this compartment through a phosphodiester linkage between a remnant of their glycosylphosphatidylinositol anchor and the β-1,6-glucan polymer. A pure β-1,6-glucanase is thus required in order to release them. In this paper, we report the expression/secretion by the yeast Yarrowia lipolytica of an Aspergillus fumigatus enzyme homologous to previously described β-1,6-glucanases. The coding sequence was expressed under the control of a strong promoter and the recombinant enzyme was targeted to the secretory pathway using the signal sequence of a well-known major secretory protein in this host. Addition of a FLAG epitope at the C-terminus allowed its efficient purification from culture supernatant following batch adsorption. The purified enzyme was characterized as a β-1,6-glucanase and was shown to be active on C. albicans cell walls allowing the release of a previously described cell wall protein.  相似文献   

4.
We studied heterologous expression of xylanase 11A gene of Chaetomium thermophilum in Pichia pastoris and characterized the thermostable nature of the purified gene product. For this purpose, the xylanase 11A gene of C. thermophilum was cloned in P. pastoris GS115 under the control of AOX1 promoter. The maximum extracellular activity of recombinant xylanase (xyn698: gene with intron) was 15.6 U ml−1 while that of recombinant without intron (xyn669) was 1.26 U ml−1 after 96 h growth. The gene product was purified apparently to homogeneity level. The optimum temperature of pure recombinant xylanase activity was 70°C and the enzyme retained its 40.57% activity after incubation at 80°C for 10 min. It exhibited quite lower demand of activation energy, enthalpy, Gibbs free energy, entropy, and xylan binding energy during substrate hydrolysis than that required by that of the donor, thus indicating its thermostable nature. pH-dependent catalysis showed that it was quite stable in a pH range of 5.5–8.5. This revealed that gene was successfully processed in Ppastoris and remained heat stable and may qualify for its potential use in paper and pulp and animal feed applications.  相似文献   

5.
To develop a gene expression system for Leuconostoc genus, construction of expression vector and expression of a heterologus protein in Leuconostoc was performed. α-Amylase gene from Lactobacillus amylovorus was cloned into a Leuconostoc cloning vector, pLeuCM, with its own signal peptide. pLeuCMamy was introduced into Leuconostoc citreum CB2567 and a successful expression of α-amy gene was confirmed by enzyme activity assays. About 90% of α-amylase activity was detected in the culture broth, revealing most of expressed α-amylase was secreted out cells. The signal sequence of α-amy gene is a good candidate for the secretion of heterologous protein by using Leuconostoc host-vector system.  相似文献   

6.
Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT) undergoes an autocatalytic process to generate 44.9 and 21.7 kDa subunits; however, a mutant protein (T399A) loses completely the processing ability and mainly exists as a precursor. For a comprehensive understanding of their structural features, the biophysical properties of these two proteins were investigated by circular dichroism and fluorescence spectroscopy. Tryptophan fluorescence and circular dichroism spectra were nearly identical for BlGGT and T399A, but unfolding analyses revealed that these two proteins had a different sensitivity towards temperature- and guanidine hydrochloride (GdnHCl)-induced denaturation. BlGGT and the unprocessed T399A displayed T m values of 61.4°C and 68.1°C, respectively, and thermal unfolding of both proteins was found to be highly irreversible. Fluorescence quenching analysis showed that T399A had a dynamic quenching constant similar to that of the wild-type enzyme. BlGGT started to unfold beyond ∼2.14 M GdnHCl and reached an unfolded intermediate, [GdnHCl]0.5, N − U, at 2.85 M, corresponding to free energy change ( DGH2O )\left( {{\Delta }G_{\rm{H}_{2}{O}} } \right) of 12.34 kcal mol − 1, whereas the midpoint of the denaturation curve for T399A was approximately 3.94 M, corresponding to a DGH2O\Delta G_{\rm{H}_{2}{O}} of 4.45 kcal mol − 1. Taken together, it can be concluded that the structural stability of BlGGT is superior to that of T399A.  相似文献   

7.

Background

Cyclodextrin glycosyltransferases (CGTases) catalyze the synthesis of cyclodextrins, which are circular α-(1,4)-linked glucans used in many applications in the industries related to food, pharmaceuticals, cosmetics, chemicals, and agriculture, among others. Economic use of these CGTases, particularly γ-CGTase, requires their efficient production. In this study, the effects of chemical chaperones, temperature and inducers on cell growth and the production of soluble γ-CGTase by Escherichia coli were investigated.

Results

The yield of soluble γ-CGTase in shake-flask culture approximately doubled when β-cyclodextrin was added to the culture medium as a chemical chaperone.When a modified two-stage feeding strategy incorporating 7.5 mM β-cyclodextrin was used in a 3-L fermenter, a dry cell weight of 70.3 g·L??1 was achieved. Using this cultivation approach, the total yield of γ-CGTase activity (50.29 U·mL??1) was 1.71-fold greater than that observed in the absence of β-cyclodextrin (29.33 U·mL??1).

Conclusions

Since β-cyclodextrin is inexpensive and nontoxic to microbes, these results suggest its universal application during recombinant protein production. The higher expression of soluble γ-CGTase in a semi-synthetic medium showed the potential of the proposed process for the economical production of many enzymes on an industrial scale.
  相似文献   

8.
Chiral amines are essential precursors in the production of biologically active compounds, including several important drugs. Among the biocatalytic strategies that have been developed for their synthesis, the use of ω-transaminases (ω-TA) appears as an attractive alternative allowing the stereoselective amination of prochiral ketones. However, the problems associated with narrow substrate specificity, unfavourable reaction equilibrium and expensive amine donors still hamper its industrial application. The search for novel enzymes from nature can contribute to expand the catalytic repertoire of ω-TA and help to circumvent some of these problems. A genome mining approach, based on the work described by Höhne et al., was applied for selection of potential R-ω-TA. Additional criteria were used to select an enzyme that differs from previously described ones. A candidate R-ω-TA from Capronia semiimmersa was selected, cloned and expressed in Escherichia coli. Interestingly, alignment of this enzyme with previously reported TA sequences revealed the presence of two additional amino acid residues in a loop close to the active site. The impact of this change was analysed with a structural model based on crystallized R-ω-TAs. Analysis of the substrate specificity of R-ω-TA from C. semiimmersa indicates that it accepts a diversity of ketones as substrates yielding the corresponding amine with good yields and excellent enantioselectivity. The expressed enzyme accepts isopropylamine as amine donor what makes it suitable for industrial processes.  相似文献   

9.
Jiayun Qiao  Yunhe Cao 《Biologia》2012,67(4):649-653
Two chimeric genes, XynA-Bs-Glu-1 and XynA-Bs-Glu-2, encoding Aspergillus sulphureus β-xylanase (XynA, 26 kDa) and Bacillus subtilis β-1,3-1,4-glucanase (Bs-Glu, 30 kDa), were constructed via in-fusion by different linkers and expressed successfully in Pichia pastoris. The fusion protein (50 kDa) exhibited both β-xylanase and β-1,3-1,4-glucanase activities. Compared with parental enzymes, the moiety activities were decreased in fermentation supernatants. Parental XynA and Bs-Glu were superior to corresponding moieties in each fusion enzymes because of lower Kn higher kcat. Despite some variations, common optima were generally 50°C and pH 3.4 for the XynA moiety and parent, and 40°C and pH 6.4 for the Bs-Glu counterparts. Thus, the fusion enzyme XynA-Bs-Glu-1 and XynA-Bs-Glu-2 were bifunctional.  相似文献   

10.
β-1,3-1,4-Glucanase has been broadly used in feed and brewing industries. According to the codon bias of Pichia pastoris, the Bacillus subtilis MA139 β-1,3-1,4-glucanase gene was de novo synthesized and expressed in P. pastoris X-33 strain under the control of the alcohol oxidase 1 promoter. In a 10-L fermentor, the β-1,3-1,4-glucanase was overexpressed with a yield of 15,000 U/mL by methanol induction for 96 h. The recombinant β-1,3-1,4-glucanase exhibited optimal activity at 40°C and pH 6.4. The activity of the recombinant β-1,3-1,4-glucanase was not significantly affected by various metal ions and chemical reagents. To our knowledge, the expression of this β-1,3-1,4-glucanase from Bacillus sp. in P. pastoris is in relatively high level compared to previous reports. These biochemical characteristics suggest that the recombinant β-1,3-1,4-glucanase has a prospective application in feed and brewing industries.  相似文献   

11.
The lipase Lip2 of the edible basidiomycete, Pleurotus sapidus, is an extracellular enzyme capable of hydrolysing xanthophyll esters with high efficiency. The gene encoding Lip2 was expressed in Escherichia coli TOP10 using the gene III signal sequence to accumulate proteins in the periplasmatic space. The heterologous expression under control of the araBAD promoter led to the high level production of recombinant protein, mainly as inclusion bodies, but partially in a soluble and active form. A fusion with a C-terminal His tag was used for purification and immunochemical detection of the target protein. This is the first example of a heterologous expression and periplasmatic accumulation of a catalytically active lipase from a basidiomycete fungus.  相似文献   

12.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

13.
14.
A 1.4 Kb fragment of Bacillus licheniformis ATCC 14580 encoding β-glucosidase was cloned and expressed in Escherichia coli. β-Glucosidase expressed by E. coli harboring cloned gene was located entirely in the intracellular fraction. Recombinant β-glucosidase protein was purified to homogeneity level and the molecular weight was found to be 53 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. It gave maximum activity at 50°C and pH 6. K m and V max were 0.206 mM and 1.26 U/mg, respectively, with p-nitrophenyl-β-D-glucopyranoside, while activation energy Ea, enthalpy of activation ?H and entropy of activation ΔS were found to be 66.31 kJ/mol, 64.04 kJ/mol and 48.28 J/mol/K, respectively. The pKa1 and pKa2 of the ionizable groups of active site residues involved in Vmax were found to be 5.5 and 7.0, respectively. When the recombinant β-glucosidase protein was used as a member of consortium with endoglucanase and exoglucanase for the saccharification of wheat straw, 123% increase in saccharification was observed.  相似文献   

15.
The gene encoding thermostable α-amylase from Bacillus licheniformis consisting of 483 amino acid residues (mature protein) was cloned and expressed in Escherichia coli under the control of T7 promoter. The analysis of the soluble and insoluble fractions after lyzing the host cells revealed that recombinant α-amylase was produced in insoluble aggregates. Despite being produced in the insoluble aggregates the recombinant enzyme was highly active with a specific activity of 408 U/mg.  相似文献   

16.
Glutamic acid γ-methyl ester (GAME) was used as substrate for theanine synthesis catalyzed by Escherichia coli cells possessing γ-glutamyltranspeptidase activity. The yield was about 1.2-fold higher than with glutamine as substrate. The reaction was optimal at pH 10 and 45°C, and the optimal substrate ratio of GAME to ethylamine was 1:10 (mol/mol). With GAME at 100 mmol, 95 mmol theanine was obtained after 8 h.  相似文献   

17.
In Escherichia coli cellular levels of pppGpp and ppGpp, collectively called (p)ppGpp, are maintained by the products of two genes, relA and spoT. Like E. coli, Vibrio cholerae also possesses relA and spoT genes. Here we show that similar to E. coli, V. cholerae ΔrelA cells can accumulate (p)ppGpp upon carbon starvation but not under amino acid starved condition. Although like in E. coli, the spoT gene function was found to be essential in V. cholerae relA + background, but unlike E. coli, several V. cholerae ΔrelA ΔspoT mutants constructed in this study accumulated (p)ppGpp under glucose starvation. The results suggest a cryptic source of (p)ppGpp synthesis in V. cholerae, which is induced upon glucose starvation. Again, unlike E. coli ΔrelA ΔspoT mutant (ppGpp0 strain), the V. cholerae ΔrelA ΔspoT mutants showed certain unusual phenotypes, which are (a) resistance towards 3-amino-1,2,4-triazole (AT); (b) growth in nutrient poor M9 minimal medium; (c) ability to stringently regulate cellular rRNA accumulation under glucose starvation and (d) initial growth defect in nutrient rich medium. Since these phenotypes of ΔrelA ΔspoT mutants could be reverted back to ΔrelA phenotypes by providing SpoT in trans, it appears that the spoT gene function is crucial in V. cholerae. Part of this work was presented at the International Symposium on Chemical Biology, Kolkata, India, 7–9 March 2007.  相似文献   

18.
A gram-negative bacterium, designated strain DAU5, was isolated from shrimp shell samples because it demonstrated high β-glucosidase activity. Through 16S rDNA gene sequence analysis the strain was identified as belonging to the genus Exiguobacterium. The β-glucosidase gene of Exiguobacterium sp. DAU5 was successfully cloned by the shotgun method. Nucleotide sequence determination by sodium dodecyl sulfate-ployacrylamide gel electrophoresis indicated that the gene for the enzyme contained 1,350 bp, was coded by 450 amino acids, and was 52 kDa. The polypeptide exhibits significant homology with other bacterial β-glucosidases and belongs to the Glycoside Hydrolase Family 1. The β-glucosidase was purified by a His-fusion purification system. The optimal pH and temperature of the enzyme were 7.0 and 45°C, respectively. The enzyme activity was strongly inhibited by Ca2+, and Li+, K+, Zn2+, Mg2+, Na2+, Ni2+, and EDTA partially inhibited the enzyme activity. The BglA showed the highest activity with p-NPG and MUG. However, strain DAU5 β-glucosidase, which is for degradation of oligosaccharides, is expected to be useful for the fermentation of cellulose degradation and the transglycosylation of saccharides.  相似文献   

19.
A gene encoding endochitinase from Trichoderma virens UKM-1 was cloned and expressed in E. coli BL21 (DE3). Both the endochitinase gene and its cDNA sequences were obtained. The endochitinase gene encodes 430 amino acids from an open reading frame comprising of 1,690 bp nucleotide sequence with three introns. The endochitinase was expressed as soluble and active enzyme at 20°C when induced with 1 mM IPTG. Maximum activity was observed at 4 h of post-induction time. SDS-PAGE showed that the purified endochitinase exhibited a single band with molecular weight of 42 kDa. Biochemical characterization of the enzyme displayed a near neutral pH characteristic with an optimum pH at 6.0 and optimum temperature at 50°C. The enzyme is stable between pH 3.0–7.0 and is able to retain its activity from 30 to 60°C. The presence of Mg2+ and Ca2+ ions increased the enzyme activity up to 20%. The purified enzyme has a strong affinity towards colloidal chitin and low effect on ethyl cellulose and D-cellubiose which are non-chitin related substrates. HPLC analysis from the chitin hydrolysis showed the release of (GlcNAc)3, (GlcNAc)2 and GlcNAc, in which (GlcNAc)2 was the main product.  相似文献   

20.

Key message

The new stem rust resistance gene Sr60 was fine-mapped to the distal region of chromosome arm 5AmS, and the TTKSK-effective gene SrTm5 could be a new allele of Sr22.

Abstract

The emergence and spread of new virulent races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici; Pgt), including the Ug99 race group, is a serious threat to global wheat production. In this study, we mapped and characterized two stem rust resistance genes from diploid wheat Triticum monococcum accession PI 306540. We mapped SrTm5, a previously postulated gene effective to Ug99, on chromosome arm 7AmL, completely linked to Sr22. SrTm5 displayed a different race specificity compared to Sr22 indicating that they are distinct. Sequencing of the Sr22 homolog in PI 306540 revealed a novel haplotype. Characterization of the segregating populations with Pgt race QFCSC revealed an additional resistance gene on chromosome arm 5AmS that was assigned the official name Sr60. This gene was also effective against races QTHJC and SCCSC but not against TTKSK (a Ug99 group race). Using two large mapping populations (4046 gametes), we mapped Sr60 within a 0.44 cM interval flanked by sequenced-based markers GH724575 and CJ942731. These two markers delimit a 54.6-kb region in Brachypodium distachyon chromosome 4 and a 430-kb region in the Chinese Spring reference genome. Both regions include a leucine-rich repeat protein kinase (LRRK123.1) that represents a potential candidate gene. Three CC–NBS–LRR genes were found in the colinear Brachypodium region but not in the wheat genome. We are currently developing a Bacterial Artificial Chromosome library of PI 306540 to determine which of these candidate genes are present in the T. monococcum genome and to complete the cloning of Sr60.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号