首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A regeneration system from protoplast to plantlet for a medicinal plant species, Phellodendron amurense Rupr., has been developed. Leaves of micropropagated shoots or plantlets were selected as plant materials for protoplast isolation. The yield and viability of leaf protoplasts were greatly influenced by enzyme combination, treatment time and osmoticum. The highest viability (86%) with a yield of 7.1×105 protoplasts per gram fresh weight was obtained with a 6-h digestion in 1% Cellulase Onozuka R-10 plus 1% Driselase-20. Sustained cell division and colony formation from the protoplasts were best supported at a plating density of 4×105−6×105 protoplasts per milliliter using a 0.2% gellan gum-solidified or liquid MS (Murashige and Skoog, 1962) medium containing 0.6M mannitol, 2.0μM 6-benzylaminopurine (BA) with 4.0 μM α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), or 2,4-dichlorophenoxyacetic acid (2,4-D). The protoplast-derived colonies formed green compact calluses when transferred to a solidified MS medium containing 2.0 μM BA with 4.0μM NAA of IBA. Shoot regeneration from protoplast-derived calluses was induced on MS medium supplemented with 2.0 μM BA and 1.0μM NAA or 2.5μM IBA. Shoot multiplication and elongation occurred on MS medium containing 1.0μM BA. In vitro-grown shoots were rooted on MS medium with either 0.5–4.0μM IBA or NAA. Regenerants were transferred to the Kanuma soil and successfully established under greenhouse conditions.  相似文献   

2.
A novel protocol for callus-mediated shoot regeneration was established for an important medicinal and ornamental plant native to South China, Curcuma kwangsiensis, using shoot base sections excised from seedlings in vitro as explant sources. The frequency of callus formation reached 91% for explants cultured on MS medium containing 1.4 μM TDZ, 4.4 μM BA and 2.3 μM 2,4-D. 8.2 shoots per callus was achieved on MS medium supplemented with 1.4 μM TDZ, 17.8 μM BA and 2.7 μM NAA. Single shoots transferred into MS medium free of plant growth regulator rooted well. Regenerated plants acclimatized ex vitro at 100%, and grew vigorously under shaded greenhouse conditions.  相似文献   

3.
An efficient micropropagation protocol based on multiple shoot induction and callus regeneration has been standardized in Sarcostemma brevistigma, a rare medicinal plant. The nodal cuttings were cultured on MS medium supplemented with BA (0.5–8 μM) or Kn (0.5–8 μM) alone or in combination with NAA (0.5–1.5 μM). Maximum multiple shoot induction was observed on MS medium supplemented with 4 μM BA. On this medium, 100% cultures responded with an average number of 11.3 shoots per explant. However, the average shoot length was limited to only 0.9 cm on this medium. The addition of 1 μM NAA along with 4 μM BA gave rise to an average number of 10.9 shoots with an average shoot length of 1.8 cm. Luxuriantly growing callus was obtained on MS medium supplemented with BA (5 μM) and 2,4-D (2 μM). The callus was subcultured on MS medium supplemented with BA (2–15 μM) or Kn (2–15 μM) alone or in combination with NAA (0.5–2 μM) for shoot organogenesis. Optimum callus regeneration was obtained on MS medium supplemented with 10 μM BA and 1 μM NAA. On this medium, 100% cultures responded with an average number of 13.4 shoots per culture. The shoots obtained via multiple shoot induction and organogenesis were rooted on half-strength MS medium supplemented with NAA (1–7 μM) or IBA (1–7 μM). IBA was better than NAA in terms of both the percentage of cultures that responded and the average number of roots per explant. The rooted shoots were successfully transplanted to soil with 86% success. This standardized protocol will help to conserve this rare medicinal plant.  相似文献   

4.
Protoplast culture and plant regeneration of an important medicinal plant Tylophora indica were achieved through callus regeneration. Protoplasts were isolated from leaf mesophyll cells and cultured at a density of 5 × 105 protoplasts per gram fresh weight, which is required for the highest frequency of protoplast division (33.7%) and plating efficiency (9.3%). The first division was observed 2 d after plating and the second division after 4 d. Culture medium consists of Murashige and Skoog (MS) liquid medium with 4 μM 2,4-D, 0.4 M mannitol and 3% (w/v) sucrose with pH adjusted to 5.8. After 45 d of culture at 25°C in the dark, protoplasts formed colonies consisting of about 100 cells. The protoplast-derived microcalli were visible to the naked eye within 60 d of culture and reached a size of 0.2–0.4 mm in diameter after 90 d. Calli of 0.2–0.4-mm size were transferred to MS medium supplemented with 2,4-D (4 μM), 3% (w/v) sucrose and 0.8% (w/v) agar, formed friable organogenic calli (7-8 mm size) after 8 wk under incubation in normal light period supplemented with 200 μmol m−2 S−1 of day light fluorescent illumination. The calli were transferred to MS medium supplemented with thidiazuron (TDZ) (1–7 μM) and naphthalene acetic acid (NAA) (0.2–0.4 μM) for regeneration. The calli developed shoot buds after 3–4 wk, and the frequencies of calli-forming shoots varied from 5% to 44%. Optimum shoot regeneration occurred on MS medium supplemented with 5 μM TDZ and 0.4 μM NAA. On this medium, 44% cultures responded with an average number of 12 shoots per callus. Whole plants were recovered following rooting of shoots in 1/2 MS medium supplemented with 3 μM indole 3-butyric acid.  相似文献   

5.
A protocol for plant regeneration from mesophyll and callus protoplasts of Robinia pseudoacacia L. was developed. For leaves from in vitro raised shoots, an enzyme combination of 2.0% cellulose and 0.3% macerozyme for a digestion period of 20 h resulted in the best yield of protoplasts (9.45 × 105 protoplast/g fresh weight). Mesophyll-derived protoplasts started cell wall regeneration within 24 h of being embedded in Nagata and Takebe (NT) medium supplemented with 5 μM NAA and 1 μM BAP followed by the first cell division on day three of culture and micro-colony (32 cells) formation within day 7–10 in the same medium. However, using callus as the starting material, a combination of 2.0% cellulose and 1.0% macerozyme for a digestion period of 24 h gave the highest protoplast yield (3.2 × 105 protoplast/g fresh weight). Cell wall regeneration in callus-derived protoplasts started within 24 h followed by the first cell division on the day three (96 h) and the appearance of microcolonies of more than 32 cells by the end of first week (144 h) of culture on solid WPM medium supplemented with 5 μM NAA and 1 μM BAP. Microcalli were visible to the naked eye after 45 days on solid WPM medium. Proliferation of macro-calli was successfully accomplished on solid Murashige and Skoog (MS) medium with 5 μM NAA and 5 μM BAP. Both mesophyll and callus protoplast-derived calli produced shoots on MS medium with 0.5 μM NAA and 1 μM BAP within 25–30 days and multiplied on MS medium with 1.25 μM BAP. Excised microshoots were dipped in 1–2 ml of 2.0 μM IBA for 24 h under dark aseptic conditions and transferred to double sterilized sand for rooting. The flasks containing sand were inoculated with Rhizobium for in vitro nodulation. Forty-five plants transferred to pots in the glasshouse established well.  相似文献   

6.
Somatic embryogenesis and subsequent plant regeneration were established from hypocotyl and internode explants collected from in vitro-grown seedlings and in vitro-proliferated shoots, respectively. Somatic embryogenesis was significantly influenced by the types of auxin and cytokinin. Friable calluses with somatic embryos developed well in Murashige and Skoog basal (MS) medium supplemented with 0.8–8.8 μM 6-benzylaminopurine (BA) and 2.0–8.0 μM 2,4-dichlorophexoxyacetic acid (2,4-D) or α-naphthaleneacetic acid (NAA). The maximal frequency of embryogenic callus and somatic embryo formation were obtained when the MS medium was amended with 8.8 μM BA and 4.0 μM 2,4-D. The best embryo germination occurred in a hormone-free 1/2-MS medium. The highest percentage of shoot proliferation was observed in embryogenic calluses in MS medium containing 2.0 μM BA and 1.0 μM NAA. In vitro-grown shoots were rooted in MS medium with 0.5–2.0 μM indole-3-butyric acid. Regenerants were transferred to vermiculite and successfully established under an ex vitro environment in garden soil.  相似文献   

7.
Justicia gendarussa is a valuable medicinal plant and various parts of this plant are pharmaceutically used for the treatment of different diseases. In vitro regeneration of shoot buds was obtained from culture of nodal cuttings as well as shoot regeneration from callus. The nodal cuttings differed in shoot proliferation in terms of percentage of explants that responded and average shoot length with various concentrations (4.4, 8.9, 13.3, 17.7, 22.2 μM) of 6-benzyladenine (BA), kinetin (Kn) and thidiazuron. In all treatments, one shoot was invariably present. Optimum 87% of cultures responded with an average shoot length of 4.4 cm on Murashige and Skoog (MS) medium supplemented with 17.7 μM BA. Callus was induced from the mature leaf segments on MS medium supplemented with Kn (4.7, 13.9, 23.2 μM) alone or in combination with 2, 4-dichlorophenoxyacetic acid (2, 4-D; 2.3 μM, 4.5 μM). Optimum callus induction (78%) was obtained on MS medium supplemented with 14 μM Kn and 4.5 μM 2, 4-D. When the callus was subcultured on MS medium fortified with BA (8.9, 17.7, 26.6 μM) or Kn (9.3, 18.6, 27.9 μM) alone or in combination with α naphthalene acetic acid (NAA; 2.7, 5.4 μM), shoot regeneration was obtained. The highest response (92%) was observed on MS medium containing 17.7 μM BA and 5.4 μM NAA. On this medium, an average number of 12.2 shoots were obtained per responding callus. The shoots obtained from callus and nodal cuttings were rooted with a frequency of 73% on MS medium augmented with 9.8 μM indole-3-butyric acid. The rooted shoots were successfully transplanted to soil and sand mixture (1:1) with 90% survival rate. The protocol standardized for shoot proliferation and regeneration in J. gendarussa from nodal cuttings and leaf-derived callus is suitable for micropropagation and conservation of this essential medicinal plant.  相似文献   

8.
The genus Dierama comprises plants with a potential to be developed as ornamentals. D. erectum seeds were decontaminated and germinated on 1/10th strength Murashige and Skoog (Physiol Plant 15:473–497, 1962) (MS) media without plant growth regulators or sucrose. In an experiment investigating the effects of 6-benzyladenine (BA), meta-Topolin (mT), kinetin (KIN) and zeatin (Z) with or without α-naphthaleneacetic acid (NAA), the highest shoot number per hypocotyl (4.20 ± 0.51) was obtained from MS medium supplemented with 1.0 μM Z after 8 weeks. This was followed by a combination of 2.0 μM KIN and 2.0 μM NAA with 3.67 ± 0.81 shoots per explant. BA treatments produced 3.20 ± 0.22 shoots per hypocotyl explant when 2.0 μM was combined with 1.0 μM NAA, while mT gave 3.09 ± 0.99 shoots per explant when 2.0 μM mT was combined with 2.0 μM NAA. Adventitious shoot regeneration was optimised when shoots were grown under a 16-h photoperiod at 100 μmol m−2 s−1 on MS medium supplemented with 1.0 μM BA. This resulted in an average of 12.73 ± 1.03 shoots per hypocotyl explant. Various concentrations of ancymidol, activated charcoal and sucrose did not promote in vitro corm formation of this species. Plants rooted successfully after 8 weeks on MS medium supplemented with 1.0 μM indole-3-butyric acid (IBA) and had an average root number of 2.73 ± 0.40. After 2 months of acclimatisation, plants had formed corms. The largest corms (of diameter 0.45 ± 0.03 cm) were produced in plants pre-treated with 0.5 μM IBA. The highest plant survival percentage of 73% was also associated with this treatment.  相似文献   

9.
Shoot organogenesis from mature leaf tissues of two scented Pelargonium capitatum cultivars, ‘Attar of Roses’ and ‘Atomic Snowflake’, grown in the greenhouse, were optimized in the presence of thidiazuron (TDZ). The protocol involved preculture of leaf sections on basal Murashige and Skoog (MS) medium supplemented with 10 μM TDZ, 4.4 μM of 6-benzyladenine (BA) and 5.4 μM α-naphtaleneacetic acid (NAA) for a period of 2 weeks and followed by subculture of explants to a fresh medium containing 4.4 μM BA and 5.4 μM NAA. Frequency of regeneration reached approximately 93% for both cultivars, with the induction of more than 100 shoots per explant. Regenerated plantlets were rooted on half-strength MS medium supplemented with 4.4 mM sucrose and 8.6 μM of Indole-3-acetic acid (IAA). All regenerated shoots from both cultivars developed roots when transferred to organic soil mix, acclimatized, and successfully transferred to greenhouse conditions. When regenerated shoots were transferred to hydroponic conditions, frequency of survival was 76.2 and 61.9% for ‘Attar of Roses’ and ‘Atomic Snowflake’, respectively.  相似文献   

10.
A protocol has been developed for somatic embryogenesis and subsequent plant regeneration in Allium schoenoprasum L. Calli were induced from root sections isolated from axenic seedlings and cultivated on media containing either Murashige and Skoog’s (MS) or Dunstan and Short’s mineral solution supplemented with 5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with 6-benzylaminopurine (BA), 6-furfurylaminopurine (Kin) or thidiazuron (TDZ) at 1, 5 or 10 μM. The highest frequencies of callus induction were achieved on media with 5 μM 2,4-D in combination with 5 μM TDZ or 10 μM BA (78.9% and 78.4%, respectively). Calli were then transferred to 1 μM 2,4-D, where compact yellow callus turned to segmented yellowish callus with transparent globular somatic embryos at the surface. Calli that were previously grown on media with 5 μM 2,4-D in combination with 10 μM BA or 10 μM TDZ showed the highest frequencies of embryogenic callus formation (45% and 42%) as well as mean number of somatic embryos per regenerating callus. The choice of mineral solution formulation did not significantly affect callus induction or embryogenic callus formation. The embryos could complete development into whole plants on plant growth regulator (PGR)-free medium, but inclusion of Kin (0.5, 2.5 and 5 μM) in this phase improved somatic embryo development and multiplication. Subsequently transferred to 1/2 MS PGR-free medium, all embryos rooted and the survival rate of the plants in a greenhouse was 96%.  相似文献   

11.
Plantlet regeneration through shoot formation from young leaf explant-derived callus of Camptotheca acuminata is described. Calli were obtained by placing leaf explants on Woody plant medium (WPM) supplemented with various concentrations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Callus induction was observed in all media evaluated. On the shoot induction medium, the callus induced on the WPM medium containing 19.8 μM BA and 5.8 μM NAA was the most effective, providing high shoot regeneration frequency (70.3 %) as well as the highest number of shoots (11.2 shoots explant−1). The good rooting percentage and root quality (98 %, 5.9 roots shoot−1) were achieved on WPM medium supplemented with 9.6 μM indole-3-butyric acid (IBA). 96 % of the in vitro rooted plantlets with well developed shoots and roots survived transfer to soil.  相似文献   

12.
An efficient in vitro micropropagation system for Clivia miniata Regel was developed using basal tissues of young petals and young ovaries as explants. For callus induction, explants were incubated on Murashige and Skoog (MS) medium containing either 2.22 μM 6-benzyladenine (BA) and 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 4.44 μM BA, 5.37 μM α-naphthaleneacetic acid (NAA), and 9.05 μM 2,4-D. Moreover, callus was induced from young ovaries when these were incubated on MS medium containing 8.88 μM BA, 10.74 μM NAA, and 9.05 or 18.10 μM 2,4-D. Subsequently, callus was transferred to MS medium supplemented with kinetin (KT) and NAA for shoot organogenesis. Frequency of shoot regeneration from petal-derived callus was highest when callus was transferred to medium containing 2.69 μM NAA with either 9.29 or 13.94 μM KT. Shoot regeneration frequency from ovary-derived callus was highest when this callus was transferred to medium containing 9.29 μM KT and 10.74 μM NAA. Overall, different explant types exhibited different organogenic capacities wherein, young petals had higher shoot regeneration frequencies than young ovaries. The highest rooting frequency (98.25 ± 3.04%) was obtained when shoots were transferred to half-strength MS medium without plant growth regulators. Regenerated plantlets were transplanted to soil mix and acclimatized, yielding a 96.80% survival frequency. Only 0.6% of regenerated plantlets exhibited morphological changes. The diploid status (2n = 22) of regenerated plantlets was determined using chromosome counts of root-tips. Moreover, inter-simple sequence repeats were used to assess the genetic fidelity of regenerated plantlets. Overall, regenerated plants shared 90.5–100.0% genetic similarities with mother plants and 89.0–100.0% similarities with each other.  相似文献   

13.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

14.
Summary A protocol for large-scale propagation of Phragmites communis Trin. by adventitious bud formation and plant regeneration was established. Adventitious buds were induced through either the indirect pathway or the direct pathway from stem explants of Phragmites communis. In the indirect pathway, it was essential to decrease the level of 2,4-dichlorophenoxyacetic acid from 9.1 to 0.5 μM to induce adventitious buds and achieve plant regeneration. In the direct pathway, the effects of different benzylaminopurine (BA) concentrations in the medium, and different positions of the explants, on adventitious bud formation were determined. Murashige and Skoog (MS) medium supplemented with 5.4μM α-naphthaleneacetic acid (NAA) and 53.4 μM BA, and the bottom part of stem explants were most responsive for the differentiation of adventitious shoot buds. The highest differentiation frequency was 20–30 adventitious shoot buds per stem node tissue. Elongation and proliferation of adventitious buds were achieved on MS medium supplemented with 13.3 μM BA and 5.4 μM NAA. Shoots were rooted in liquid half-strength MS medium with 5.4 μM NAA+4.9 μM indole-3-butyric acid. Rooted plants survived (87.5%) and grew well after transfer into soil for 4 wk. More than 20 000 regenerated plants of a salt-tolerant variant line of Phragmites communis have been produced. This protocol is useful for clonal micropropagation and possibly for Agrobacterium- mediated gene transfer in P. communis.  相似文献   

15.
An in vitro regeneration and transient expression systems were developed for the halophyte sea aster (Aster tripolium L.), an important genetic resource for salt tolerance. Adventitious shoots were formed from both leaf explants and suspension-cultured cells in a Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962) basal salts containing 500 mg l−1 casamino acids, and supplemented with 5.4 μM a-naphthaleneacetic acid (NAA) and 4.7 μM kinetin to the culture medium. Hyperhydricity of shoots was avoided by increasing the ventilation of the culture vessel. Root formation from shoots was promoted in the presence of 26.9 μM NAA. A high yield of protoplasts was isolated using 1% cellulase and 0.25% pectinase from both leaf mesophyll and suspension-cultured cells, and these were used for transient expression. The highest level of transient expression of the green fluorescent protein was obtained with 1 × 105 protoplasts ml−1, 25 μg batch−1 of plasmid vector, and 30% polyethylene glycol 4,000.  相似文献   

16.
Micropropagation has been achieved in a promising larvicidal asteraceous taxon Spilanthes acmella L. using seedling leaf explants. The explants were reared on a variety of growth regulators, namely 2,4-dichlorophenoxyacetic acid, 1-naphthalene acetic acid, Indole-3-butyric acid, N6-benzyladenine, and kinetin either alone or in combination on Murashige and Skoog’s (MS) medium. The best green and compact callus was obtained on 1 μM NAA and 10 μM benzyladenine (BA) in 15 d. The callus on subculture to the same but fresh medium after every 30 d differentiated an average of 12.90 ± 0.32 shoot buds in 50% cultures. Elongation in shoot buds occurred only if they were transferred to NAA lacking MS+BA medium. An average number of 4.22 ± 0.83 shoots and 15 ± 0.84 shoot buds per explant were obtained in 70.3% cultures on MS + 10 μM BA in 30 d. One hundred percent excised shoots rooted in MS(1/2) + 0.1 μM IBA within 2 wk. The plants were gradually hardened and established in soil where they flowered and set viable seeds. The regenerated plants were morphologically similar to the field grown plants and showed 100% larvicidal activity against malaria and filarial vectors.  相似文献   

17.
Pityopsis ruthii is an endangered herbaceous perennial species from the United States. In vitro multiplication of this species can be valuable for germplasm conservation. Flower receptacles of P. ruthii were cultured on Murashige and Skoog medium (MS) supplemented with 11.4 μM indole-3-acetic acid (IAA) in combination with 2.2, 4.4 or 8.8 μM 6-benzyladenine (BA). Shoots were visible within 14–28 days and three plants were successfully rooted on MS medium supplemented with 5.7 μM IAA. A two tailed t-test for paired-variates revealed that shoot regeneration on MS medium amended with 11.4 μM IAA and 2.2 μM BA was significantly higher (P < 0.05) than on other treatments. Leaf explants were also cultured on MS not supplemented with growth regulators or supplemented with 11.4 μM IAA in combination with 0, 2.2, 4.4 or 8.8 μM BA. Shoots were visible within 21–35 days and one plant was successfully rooted on MS medium supplemented with 5.4 μM NAA. Shoot regeneration on MS medium augmented with 11.4 μM IAA and 2.2 μM BA was significantly higher (P < 0.05) than the other treatments according to analysis of variance (ANOVA) with a rank transformation. Hyperhydricity and rooting of shoots was problematic for explants derived from flower receptacles and leaf tissue, but viable plants were regenerated using both explants sources indicating the potential role for micropropagation in the ex situ conservation of the species.  相似文献   

18.
Wetland species mat rush (Juncus effusus L.) is an important economic plant, but no information is available regarding plant regeneration, callus induction, and its proliferation from in vitro seed grown plantlets. The present study investigates the effects of growth regulator combinations and medium innovation on tissue culture system of five mat rush varieties. Addition of N6-benzyladenine (BA) and 2,4-dichlorophenoxyacetic acid (2,4-D) in Murashige and Skoog (MS) medium showed significantly positive effect on callus proliferation, plant regeneration, and its multiplication compared to the medium devoid of BA. The highest callus induction frequency (80.95%, 90.48%, 75.40%, 70.83%, and 83.33%) was observed in MS medium containing 0.5 mg L−1 (2.2 μM) BA in Yinlin-1, Nonglin-4, Gangshan, Taicao, and Taiwan green, respectively. Various growth regulator combinations with successive subculture (medium replacement) were found essential to develop organogenic calluses and to regenerate shoots. The combination of 0.1 mg L−1 BA (0.4 μM) and 2 mg L−1 2,4-D (9.0 μM) in MS medium was found best for callus proliferation for all the varieties under trial. The plant regeneration required two steps involving successive medium replacements as well as optimal hormonal balances. Successful plant regeneration (over 70%) was observed only by transferring the organogenic callus from regeneration medium I [MS medium containing 0.5 mg L−1 BA (2. μM) and 1.0 mg L−1 kinetin (KT; 4.6 μM)] to the regeneration medium II [MS medium containing 0.5 mg L−1 BA (2.2 μM), 1.0 mg L−1 KT (4.6 μM) and 3.0 mg L−1 indoleacetic acid (IAA; 17.1 μM)]. Our results confirmed the importance of the ratio of auxin (IAA) to cytokinin (BA and KT) in the manipulation of shoot regeneration in J. effusus L. The maximum plant survival frequency and multiplication rates (90.97% and 5.40 and 94.23% and 8.25) were recorded in the presence of 0.5 mg L−1 BA (2.2 μM) in the 1/2 MS multiplication medium for the varieties of Nonglin-4 and Taicao, respectively. About 100% survival rate was also observed for all the varieties in soil conditions. The efficient plant regeneration system developed here will be helpful for rapid micropropagation and further genetic improvement in J. effusus L.  相似文献   

19.
Saffron (Crocus sativus L.) is a monocotyledonous plant propagated via corms, but recently several alternative methods have been reported. To find the conditions suitable for saffron shoot formation from corms, the effect of different concentrations of the plant growth regulatory cytokinins N6-benzyladenine (BA) and N-phenyl-1, 2,3-thidiazol-5-ylurea, commonly known as thidiazuron (TDZ), were compared. In all corm explants, an average of 39.5 ± 5.1 shoots per corm were induced by 4.54 μM TDZ, whereas only 3.6-11.4% by BA. The outstanding result in the shoot formation stage is the generation of globular, translucent structures that are morphologically similar to globular embryos. To optimize the plant regeneration from the induced adventitious shoots obtained from the TDZ treatment, the shoots were transferred to MS and B5 media supplemented with different concentrations and combinations of NAA and BA. The highest rate of plant regeneration from developing shoots was observed in the B5 medium containing 2.22 μM NAA and 2.68 μM BA. With optimized hormonal conditions, an average of 19.55 ± 5.75 shoots and 3.18 ± 1.5 roots per explants were obtained. Based on this experiment, a simple, new and efficient protocol is presented to produce numerous plants from induced corm explants of saffron.  相似文献   

20.
Shoots were regenerated from in vitro leaf tissues of two genotypes of Viburnum dentatum, a popular shrub species for landscape use. Adventitious shoots were induced when leaf tissues were cultured on woody plant medium (WPM) supplemented with either benzyladenine (BA) or thidiazuron (TDZ). Effects of cytokinin concentration, indole-3-butyric acid (IBA), and dark treatment on shoot regeneration were investigated. Dark treatment for the first 4 weeks of leaf explants cultured in the regeneration medium significantly increased the frequency of regeneration. The highest frequency of shoot regeneration (70%) for ‘Synnesvedt’ was obtained when leaf tissues were cultured in the medium with 40 μM BA or 8 μM TDZ with 4 weeks dark treatment. The highest frequency of shoot regeneration (90%) for ‘MN34’ was found in the 4 μM TDZ medium with 4 weeks dark treatment. Addition of IBA significantly enhanced shoot regeneration. Ethyl methanesulfonate (EMS) treatment inhibited callus proliferation, particularly in the early stage of callus recovery; however, no significant difference in shoot regeneration among different treatments was observed, indicating that the inhibitory effect of EMS was minimal after calluses re-acquired their capacity to grow and regenerate in the regular medium. Regenerated shoots (>1.5 cm) were rooted in the half-strength MS medium containing 5-10 μM IBA or naphthalene acetic acid (NAA). Rooted plants were transferred to the potting medium and grown in the greenhouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号