首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
A taxonomic study was carried out on Gsoil 142T, a bacterial strain isolated from the soil collected in a ginseng field in Pocheon province, South Korea. Comparative 16S rRNA gene sequence studies showed a clear affiliation of this bacterium to the Gammaproteobacteria, and it was most closely related to Hydrocarboniphaga effusa ATCC BAA 332T (94.4%, 16S rRNA gene sequence similarity), Nevskia ramosa DSM 11499T (94.1%) and Alkanibacter difficilis MN154.3T (92.0%). Strain Gsoil 142T was a Gram-negative, strictly aerobic, motile, and rod-shaped bacterium. The G+C content of the genomic DNA was 69.9% and predominant ubiquinone was Q-8. Major fatty acids were summed feature 8 (C18:1 ω7c and/or ω6c, 36.3%), summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c, 20.6%) and C16:0 (17.4%). The major polar lipids detected in strain Gsoil 142T were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unknown glycolipid. On the basis of polyphasic evidence, it is proposed that strain Gsoil 142T should be placed in a novel genus and species, for which the name Panacagrimonas perspica gen. nov., sp. nov. is proposed. The type strain is Gsoil 142T (= KCTC 12982T = LMG 23239T).  相似文献   

2.
A Gram-positive, rod-shaped, non-spore-forming bacterium (Gsoil 485T) was isolated from the soil of a ginseng field located in Pocheon province in South Korea. This bacterium was characterized in order to determine its taxonomic position by using the polyphasic approach. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 485T was shown to belong to the family Nocardioidaceae and related to Nocardioides koreensis (96.8% 16S rRNA gene sequence similarity), Nocardioides basaltis (96.7%), Nocardioides salarius (96.7%), and Nocardioides sediminis (96.5%). The sequence similarity with other species that had validly published names within the genus Nocardioides was less than 96.4%. Strain Gsoil 485T was characterized chemotaxonomically as having LL-2,6-diaminopimelic acid in a cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone, and iso-C16:0, C18:1 ω9c as the major fatty acids. The G+C content of genomic DNA was 71.6 mol%. The chemotaxonomic properties and phenotypic characteristics supported the affiliation of strain Gsoil 485T to the genus Nocardioides. The results of both physiological and biochemical tests allowed for genotypic differentiation of strain Gsoil 485T from the recognized Nocardioides species. Therefore, strain Gsoil 485T is considered to represent the novel species, for which the name Nocardioides ginsengisegetis sp. nov. is proposed, with the type strain Gsoil 485T (KACC 14269T =KCTC 19469T =DSM 21349T).  相似文献   

3.
A Gram-negative, non-motile, rod shaped, and orange-pigmented chemoheterotrophic bacterium, strain MS-31T was isolated from the marine sponge Hymeniacidon flavia, collected from near Jeju Island, Korea. The Strain MS-31T was subjected to a polyphasic taxonomic study. The phylogenetic analysis based on the 16S rRNA gene sequences revealed that the novel isolate could be affiliated within the genus Sphingomonas. The strain MS-31T showed 95.6% of 16S rRNA gene sequence similarity with the most closely related species Sphingomonas koreensis JSS26T. The DNA G+C content of the strain MS-31T was 69.4 mol%. The major isoprenoid quinone was ubiqunone 10 and predominant cellular fatty acids were summed feature 7 (comprising C18:1 ω7c, C18:1 Ω9t and/or C18:1 ωl2t, 39.7%), C16:0 (16.3%), C14:0 2OH (15.9%) and summed feature 3 (comprising C16:1 ω7c and/or C15:0 iso 2OH, 11.7%). The polar lipids were sphingoglycolipid, phosphatidyletha-nolamine, phosphatidylglycerol, diphosphatidylglycerol and unidentified glycolipid. Based on the evidence from the polyphasic taxonomic study, the strain should be classified as a new species of the genus Sphingomonas. As a result, the name Sphingomonas jejuensis sp. nov. (type strain MS-31T =KCTC 23321T =NBRC 107775T) is proposed.  相似文献   

4.
Strain Gsoil 348T was isolated from a ginseng field soil sample by selecting micro-colonies from one-fifth strength modified R2A agar medium after a long incubation period. 16S rRNA gene sequence analysis indicated that the strain is related to members of the phylum Armatimonadetes (formerly called candidate phylum OP10). Strain Gsoil 348T is mesophilic, strictly aerobic, non-motile and rod-shaped. It only grows in low nutrient media. The major respiratory quinones are menaquinones MK-11 and MK-10, and the main fatty acids are iso-C15:0, iso-C17:0, C16:0 and C16:1 ω11c. The G+C content is 61.4 mol%. The 16S rRNA gene sequences in public databases belonging to the phylum Armatimonadetes were clustered here into 6 groups. Five of these groups constituted a coherent cluster distinct from the sequences of other phyla in phylogenetic trees that were constructed using multiple-outgroup sequences from 49 different phyla. On the basis of polyphasic taxonomic analyses, it is proposed that strain Gsoil 348T (= KACC 14959T = JCM 17079T) should be placed in Fimbriimonas ginsengisoli gen. nov., sp. nov., as the cultured representative of the Fimbriimonadia class. nov., corresponding with Group 4 of the phylum Armatimonadetes.  相似文献   

5.
A proteobacterial strain designated R1-3T was isolated from indoor air of a pharmaceutical environment. Cells were Gram-stain-negative, oxidase- and catalase-positive, aerobic, motile and rod-shaped. Strain R1-3T grew optimally at pH 7, 30 °C and in 0–2 % NaCl on R2A agar. The 16S rRNA gene sequence analysis indicated that strain R1-3T belongs to the genus Sphingomonas, and is closely related to Sphingomonas paucimobilis ATCC 29837T (98.4 % sequence similarity). However, the DNA–DNA relatedness between the two strains was 43 ± 5 % (reciprocal = 37 ± 3 %), which was well below the suggested level for species distinction. Sphingomonas yabuuchiae GTC868T (97.7 % 16S rRNA gene sequence similarity) and Sphingomonas pseudosanguinis G1-2T (97.6 %) were also found as distantly related taxa. Strain R1-3T was sensitive to most of the tested antibiotics except for erythromycin and streptomycin. The major fatty acid was a summed feature consisting of C18:1 ω7c and/or C18:1 ω6c, and minor proportions of C14:0 2-OH, C16:0 and a summed feature consisting of C16:1 ω7c and/or C16:1 ω6c were also present. The DNA G + C content was 67.2 ± 1.0 mol%. The major polyamines were sym-homospermidine and spermidine. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, and minor amounts of a sphingoglycolipid, a phospholipid, an aminoglycolipid and an unidentified lipid were also present. The phenotypic, phylogenetic and chemotaxonomic data not only supported the affiliation of strain R1-3T to the genus Sphingomonas, but also distinguished R1-3T from related species. On the basis of physiological, chemotaxonomic and phylogenetic evidences, strain R1-3T clearly merits recognition as a novel species of Sphingomonas, for which the name Sphingomonas aeria sp. nov. is proposed. The type strain is R1-3T (= KCTC 42061T = JCM 19859T).  相似文献   

6.
A Gram-staining negative bacterium, THG-DT81T, which was isolated from soil of a ginseng field, was investigated using a polyphasic taxonomic approach. Cells were oxidase- and catalase-positive, aerobic, rod-shaped and motile with one polar flagellum. Strain THG-DT81T grew optimally at pH 7.0 and in the absence of NaCl on trypticase soy agar. Its optimum growth temperature was 25–28 °C. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain THG-DT81T belongs to the family Sphingomonadaceae and was related to Sphingomonas pituitosa EDIVT (98.0 % similarity), S. leidyi ATCC 15260T (97.8 %), S. trueperi LMG 2142T (97.1 %), S. azotifigens NBRC 15497T (97.1 %), S. koreensis JSS26 T (97.1 %) and S. dokdonensis DS-4T (97.0 %). Strain THG-DT81T contained Q-10 as the predominant ubiquinone and C18:1 ω7c and C16:0 as the major fatty acids. The G+C content of the genomic DNA was determined to be 66.8 mol %. The major component in the polyamine pattern was identified as sym-homospermidine. The major polar lipids detected in strain THG-DT81T were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine. The DNA–DNA relatedness values of the strain THG-DT81T and its closest phylogenetically neighbors were below 21 %. The phenotypic characteristics and genotypic data demonstrated the affiliation of strain THG-DT81T to the genus Sphingomonas. On the basis of the polyphasic taxonomic data presented, strain THG-DT81T is described as a novel species of genus Sphingomonas, for which the name Sphingomonas kyeonggiense sp. nov. is proposed. The type strain is THG-DT81T (= KACC 17173T = JCM 18825T).  相似文献   

7.
A Gram-negative, non-motile, non-spore-forming, small, orange, rod-shaped bacterium was isolated from soil in South Korea and characterized to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence examination revealed that strain PB323T belongs to the family Sphingomonadaceae. The highest degree of sequence similarity was found with Sphingomonas kaistensis PB56T (98.9%), followed by Sphingomonas astaxanthinifaciens TDMA-17T (98.3%). Chemotaxonomic characteristics (the G+C content of the genomic DNA 69.0 mol%, Q-10 quinone system, C18:1 ω7c/ω9t/ω12t, C16:1 ω7c/C15:0 iso 2OH, C17:1 ω6c, and C16:0 as the major fatty acids) corroborated assignment of strain PB323T to the genus Sphingomonas. Results of physiological and biochemical tests clearly demonstrate that strain PB323T represents a distinct species and support its affiliation with the genus Sphingomonas. Based on these data, PB323T (=KCTC 12341T =JCM 16603T =KEMB 9004-003T) should be classified as a type strain of a novel species, for which the name Sphingomonas humi sp. nov. is proposed.  相似文献   

8.
A Gram-positive, coccoid to rod-shaped, non-spore-forming bacterium, designated Gsoil 958T, was isolated from soil of a ginseng field located in Pocheon province in South Korea. This bacterium was characterized in order to determine its taxonomic position by using a polyphasic approach. Strain Gsoil 958T was observed to grow well at 25–30 °C and at pH 7.0 on R2A and nutrient agar without NaCl supplementation. Strain Gsoil 958T was determined to have β-glucosidase activity and the ability to transform ginsenoside Rb1 (one of the dominant active components of ginseng) to F2 via gypenoside XVII and Rd. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 958T was shown to belong to the family Nocardioidaceae and related most closely to Nocardioides koreensis MSL-09T (97.6 % 16S rRNA gene sequence similarity), Nocardioides aquiterrae GW-9T (97.0 %), and Nocardioides sediminis MSL-01T (97.0 %). The sequence similarities with other validly named species within the genus Nocardioides were less than 96.8 %. Strain Gsoil 958T was characterized chemotaxonomically as having LL-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone, and iso-C16:0, iso-C16:1 H, iso-C14:0, iso-C15:0 were identified as the major fatty acids. The G + C content of genomic DNA was determined to be 70.8 mol %. The chemotaxonomic properties and phenotypic characteristics supported the affiliation of strain Gsoil 958T to the genus Nocardioides. The results of both physiological and biochemical tests allowed for differentiation of strain Gsoil 958T from the recognized Nocardioides species. Therefore, strain Gsoil 958T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides panaciterrulae sp. nov. is proposed, with the type strain Gsoil 958T (KACC 14271T = KCTC 19471T = DSM 21350T).  相似文献   

9.
A Gram-negative, strictly aerobic, non-motile, non-spore-forming and rod-shaped bacterial strain designated KHI67T was isolated from sediment of the Gapcheon River in South Korea and its taxonomic position was investigated by using a polyphasic approach. Strain KHI67T was observed to grow optimally at 25–30 °C and at pH 7.0 on nutrient and R2A agar. On the basis of 16S rRNA gene sequence similarity, strain KHI67T was shown to belong to the family Sphingomonadaceae and was related to Sphingomonas faeni MA-olkiT (97.6 % sequence similarity), Sphingomonas aerolata NW12T (97.5 %) and Sphingomonas aurantiaca MA101bT (97.3 %). The G + C content of the genomic DNA was determined to be 65.6 %. The major ubiquinone was found to be Q-10, the major polyamine was identified as homospermidine and the major fatty acids identified were summed feature 8 (comprising C18:1 ω7c/ω6c; 37.0 %), C16:0 (13.0 %), summed feature 3 (comprising C16:1 ω7c/C16:1 ω6c; 12.8 %) and C14:0 2OH (9.3 %). DNA and chemotaxonomic data supported the affiliation of strain KHI67T to the genus Sphingomonas. The DNA–DNA relatedness values between strain KHI67T and its closest phylogenetic neighbours were below 15 %. Strain KHI67T could be differentiated genotypically and phenotypically from the recognised species of the genus Sphingomonas. The isolate therefore represents a novel species, for which the name Sphingomonas ginsenosidivorax sp. nov. is proposed, with the type strain KHI67T (=KACC 14951T = JCM 17076T = LMG 25801T).  相似文献   

10.
Two strains PB196T and PB62T of Gram-negative, non-motile, and non-spore-forming bacteria, were isolated from soil in South Korea and characterized to determine their taxonomic positions. 16S rRNA gene sequence analysis showed that the two strains belonged to the genus Sphingomonas. The highest degree of sequence similarity of strain PB196T was found with PB62T (98.9%), Sphingomonas humi PB323T (98.9%), Sphingomonas kaistensis PB56T (98.2%), and Sphingomonas astaxanthinifaciens TDMA-17T (98.0%). The highest degree of sequence similarity of strain PB62T was found with Sphingomonas humi PB323T (98.8%), Sphingomonas astaxanthinifaciens TDMA-17T (98.2%), and Sphingomonas kaistensis PB56T (98.1%). Chemotaxonomic data revealed that they possessed ubiquinone-10 (Q-10) as common in the genus Sphingomonas, that the predominant fatty acids were summed feature 7 (C18:1 ω7c/ω9t/ω12t), summed feature 4 (C16:1 ω7c/C15:0 iso 2OH), C16:0, and C17:1 ω6c, and that they contained sphingoglycolipid, phosphatidylglycerol (PG), and phosphatidyle-thanolamine (PE) in common but they showed difference for diphosphatidylglycerol (DPG). Based on these data, PB196T (=KCTC 12339T =JCM 16604T) and PB62T (=KCTC 12336T =JCM 16605T =KEMB 9004-005T) should be classified as type strains of two novel species, for which the names Sphingomonas rosea sp. nov. and Sphingomonas swuensis sp. nov. are proposed, respectively.  相似文献   

11.
A novel bacterial strain designated 9PNM-6T was isolated from an abandoned lead–zinc ore mine site in Meizhou, Guangdong Province, China. The isolate was found to be Gram-negative, rod-shaped, orange-pigmented, strictly aerobic, oxidase- and catalase-positive. Growth occurred at 0–4 % NaCl (w/v, optimum, 0 %), at pH 6.0–8.0 (optimum, pH 7.0) and at 15–32 °C (optimum, 28–30 °C). Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 9PNM-6T belongs to the genus Sphingomonas, with the highest sequence similarities with Sphingomonas jejuensis NBRC 107775T (99.7 %), Sphingomonas koreensis KCTC 2882T (95.1 %) and Sphingomonas dokdonesis KCTC 12541T (95.1 %). The chemotaxonomic characteristics of strain 9PNM-6T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was identified as ubiquinone Q-10, the major polyamine as sym-homospermidine, and the major cellular fatty acids as C18:1 ω7c, C16:0, C16:1 ω7c and/or C16:1 ω6c and C14:0 2-OH. The major polar lipids are sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatideylcholine, an unidentified phospholipid and four unidentified aminolipids. The genomic DNA G+C content of strain 9PNM-6T was determined to be 69.2 ± 0.6 mol%. Based on comparative analyses of morphological, physiological and chemotaxonomic data, and levels of DNA–DNA relatedness values, strain 9PNM-6T is considered to represent a novel species of the genus Sphingomonas, for which the name Sphingomonas gimensis sp. nov. (Type strain 9PNM-6T = GIMCC 1.655T = CGMCC 1.12671T = DSM 27569T) is proposed.  相似文献   

12.
A Gram-positive, strictly aerobic, nonmotile, yellowish, coccus-rod-shaped bacterium (designated Gsoil 653T) isolated from ginseng cultivating soil was characterized using a polyphasic approach to clarify its taxonomic position. The strain Gsoil 653T exhibited optimal growth at pH 7.0 on R2A agar medium at 30°C. Phylogenetic analysis based on 16S rRNA gene sequence similarities, indicated that Gsoil 653T belongs to the genus Terrabacter of the family Humibacillus, and was closely related to Terrabacter tumescens DSM 20308T (98.9%), Terrabacter carboxydivorans PY2T (98.9%), Terrabacter terrigena ON10T (98.8%), Terrabacter terrae PPLBT (98.6%), and Terrabacter lapilli LR-26T (98.6%). The DNA G + C content was 70.5 mol%. The major quinone was MK-8(H4). The primary polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidyl-ethanolamine. The predominant fatty acids were iso-C15:0, iso-C16:0, iso-C14:0, and anteiso-C15:0, as in the case of genus Terrabacter, thereby supporting the categorization of strain Gsoil 653T. However, the DNA-DNA relatedness between Gsoil 653T and closely related strains of Terrabacter species was low at less than 31%. Moreover, strain Gsoil 653T could be both genotypically and phenotypically distinguished from the recognized species of the genus Terrabacter. This isolate, therefore, represents a novel species, for which the name Terrabacter ginsengisoli sp. nov. is proposed with the type strain Gsoil 653T (= KACC 19444T = LMG 30325T).  相似文献   

13.
Gram-positive, aerobic, non-motile, pale-yellow, and rodshaped bacterium, designated as Gsoil 188T, was isolated from the soil of a ginseng field in Pocheon, South Korea. A phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that the strain formed a distinct lineage within the genus Brevibacterium and was most closely related to B. epidermidis NBRC 14811T (98.4%), B. sediminis FXJ8.269T (98.2%), B. avium NCFB 3055T (98.1%), and B. oceani BBH7T (98.1%), while it shared less than 98.1% identity with the other species of this genus. The DNA G + C content was 68.1 mol%. The predominant quinone was MK-8(H2). The major fatty acids were anteiso-C15:0 and anteiso-C17:0. The cell wall peptidoglycan of strain Gsoil 188T contained meso-diaminopimelic acid. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, and an unidentified aminolipid. The physiological and biochemical characteristics, low DNA-DNA relatedness values, and taxonomic analysis allowed the differentiation of strain Gsoil 188T from the other recognized species of the genus Brevibacterium. Therefore, strain Gsoil 188T represents a novel species of the genus Brevibacterium, for which the name Brevibacterium anseongense sp. nov. is proposed, with the type strain Gsoil 188T (= KACC 19439T = LMG 30331T).  相似文献   

14.
Strain S22T, a novel cellulolytic bacterium was isolated from the rhizosphere of pine trees. This isolate was Gram-reaction positive, motile and rods, and formed terminal or subterminal ellipsoidal spores. S22T represented positive activity for catalase, oxidase, esterase (C4), esterase lipase (C8), β-galactosidase, leucine arylamidase, and hydrolysis of esculin. It contained meso-diaminopimelic acid as the diagnostic dia-mino acid in the cell-wall. The predominant isoprenoid quinone was menaquinone 7 (MK-7), and the major cellular fatty acids were anteiso-C15:0 (52.9%), iso-Ci16:0 (11.3%), and iso-C15:0 (10.0%). The DNA G+C content was 43.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that this isolate belonged to the family Paenibacillaceae. S22T exhibited less than 97.0% 16S rRNA gene similarity with all relative type strains in the genus Paenibacillus, and the most closely related strains were Paenibacillus anaericanus MH21T and Paenibacillus ginsengisoli Gsoil 1638T, with equal similarities of 95.8%. This polyphasic evidence suggested that strain S22T should be considered a novel species in the genus Paenibacillus, for which the name, Paenibacillus pini sp. nov., is proposed. The type strain is S22T (=KCTC 13694T =KACC 14198T =JCM 16418T)  相似文献   

15.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

16.
A gram-negative, motile, coccoid- and amorphous-shaped, non-pigmented chemoheterotrophic bacterium, designated strain PZ-5T, was isolated from sea water of Sagami Bay in Japan and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate could be affiliated with the class Gammaproteobacteria. Strain PZ-5T showed below 93.9% similarity with validly published bacteria and demonstrated the highest sequence similarity to Dasania marina KOPRI 20902T (93.9%). Strain PZ-5T formed a monophyletic group with D. marina KOPRI 20902T. The DNA G+C content of strain PZ-5T was 49.8 mol%. The major isoprenoid quinone was Q-8 and predominant cellular fatty acids were C15:0 ISO 20H (19%), C16:1 ω7c (17.4%), C17;1 ω8c (16.2%), C11:0 3OH (7.5%), and C15:1 ω8c (6.5%). Based on evidence from a polyphasic taxonomical study, it was concluded that the strain should be classified as representing a new genus and species of the class Gammaproteobacteria, for which the name Oceanicoccus sagamiensis gen. nov., sp. nov., (type strain PZ-5T =NBRC 107125T =KCTC 23278T) is proposed.  相似文献   

17.
The Gram-negative, strictly aerobic, non-motile, non-spore-forming, rod shaped bacterial strain designated TR6-03T was isolated from compost, and its taxonomic position was investigated by using a polyphasic approach. Strain TR6-03T grew at 4–42°C and at pH 6.0–8.0 on R2A and nutrient agar without NaCl supplement. Strain TR6-03T had β-glucosidase activity, which was responsible for its ability to transform ginsenoside Re (one of the dominant active components of ginseng) to Rg2. On the basis of 16S rRNA gene sequence similarity, strain TR6-03T was shown to belong to the family Sphingobacteriaceae and to be related to Mucilaginibacter lappiensis ANJLI2T (96.3% sequence similarity), M. dorajii FR-f4T (96.1%), and M. rigui WPCB133T (94.1%). The G+C content of the genomic DNA was 45.6%. The predominant respiratory quinone was MK-7 and the major fatty acids were summed feature 3 (comprising C16:1 ω7c and/or iso-C15:0 20H), iso-C16:0 and iso-C17:0 3OH. DNA and chemotaxonomic data supported the affiliation of strain TR6-03T to the genus Mucilaginibacter. Strain TR6-03T could be differentiated genotypically and phenotypically from the recognized species of the genus Mucilaginibacter. The isolate therefore represents a novel species, for which the name Mucilaginibacter composti sp. nov. is proposed, with the type strain TR6-03T (=KACC 14956T = KCTC 12642T =LMG 23497T).  相似文献   

18.
A bacterial strain, designated GR24-5T, was isolated from soil cultivated with Korean ginseng. Cells were Gram-negative, strictly aerobic, catalase- and oxidase-positive, non-spore-forming motile rods. Based on the 16S rRNA gene sequence, strain GR24-5T could be assigned to the family Alcaligenaceae. Strain GR24-5T showed the highest sequence similarities with Parapusillimonas granuli Ch07T (97.1%), Pusillimonas noertemannii BN9T (96.9%), Pigmentiphaga kullae DSM 13608T (96.5%), and Castellaniella defragrans 54PinT (96.3%). Strain GR24-5T demonstrated a low DNA-DNA relatedness (23%) with P. granuli Ch07T. The major respiratory quinone is ubiquinone 8 (Q-8) and the major fatty acids are C16:0, C17:0 cyclo, and summed feature 1 (C14:0 3-OH/iso-C16:1 I/C12:0 aide). Putrescine, spermidine, and 2-hydroxyputrescine are the major polyamines. The major polar lipids are phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, di-phosphatidylglycerol, and an unknown aminophospholipid. Polar lipid patterns of strain GR24-5T were unique in having a large amount of phosphatidylmethylethanolamine. Based on phylogenetic analysis and physiological and biochemical characteristics, strain GR245T represents a novel genus and species, for which the name Paralcaligenes ureilyticus gen. nov., sp. nov. is proposed. The type strain of P. aralcaligenes ureilyticus is GR24-5T (=KACC 13888 =DSM 24591T).  相似文献   

19.
A novel Gram-negative, catalase- and oxidase-positive, strictly aerobic, non spore-forming, rod-shaped bacterium, designated strain JSM 083058T, was isolated from non-saline forest soil in Hunan Province, China. Growth occurred with 0–8% (w/v) NaCl (optimum, 0.5–3%) at pH 6.0–10.0 (optimum, pH 7.0) and at 5–35°C (optimum, 25–30°C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 083058T fell within the cluster comprising species of the genus Sphingomonas, clustering with Sphingomonas aestuarii K4T, with which it shared highest 16S rRNA gene sequence similarity (99.2%). The chemotaxonomic properties of strain JSM 083058T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was ubiquinone Q-10, and the major cellular fatty acids were summed feature 8 (C18:1ω7c/C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c) and C17:1ω6c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. The genomic DNA G+C content of strain JSM 083058T was 65.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 083058T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hunanensis sp. nov. is proposed. The type strain is JSM 083058T (=CCTCC AA 209011T = DSM 22213T).  相似文献   

20.
A Gram-negative, non-motile, non-spore-forming bacterial strain designated IBFC2009T was isolated from soil of a bamboo plantation. The strain could grow at 11°C∼39°C, pH 6.0–9.0, and in the presence of 0∼5% NaCl. Based on 16S rRNA gene sequence analysis, Strain IBFC2009T belonged to the genus Sphingobacterium and showed the highest sequence similarity of 94.6% (S. composti T5-12T) with the type strains within the genus. The major fatty acids were summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c, 34.4%), iso-C15:0 (22.4%), C16:0 3-OH (15.2%), and iso-C17:0 3-OH (12.8%). The G+C content of the genomic DNA was 41.0 mol%. According to the phenotypic and genotypic characteristics, Strain IBFC2009T should represent a novel species of the genus Sphingobacterium, for which the name Sphingobacterium bambusae sp. nov. is proposed. The type strain is IBFC2009T (=CCTCC AB 209162T =KCTC 22814T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号